1. To find the range of a set of numbers, subtract the least number from the greatest number.

Find the range of this set of numbers.

\[32 \ 57 \ 29 \ 12 \ 45\]

A. 45
B. 35
C. 33
D. 13

2. Find the fraction that shows the shaded part.

A. \(\frac{1}{4}\)
B. \(\frac{1}{6}\)
C. \(\frac{1}{3}\)
D. \(\frac{1}{2}\)

3. Solve the riddle using the clues and numbers in the table.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

It is not the double of 2 x 2.
It is not < 7.
It does not equal 5 tens.
It does not equal 2 x 8.
It is not the missing number in 3 x N = 15.

The number is __________.
1. How much money do you have in all?

2. The Planet Star has three coins. Each coin has the following weight.

 - 1 gram
 - 5 grams
 - 10 grams

 What will be the weight in grams of the following coins?

3. Look at the table of bagel prices.

<table>
<thead>
<tr>
<th>Number of Bagels</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>$0.40</td>
<td>$0.80</td>
<td>$1.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 If the pattern continues, how much will 5 bagels cost?
1. During summer vacation, Sam is planning to sell lemonade each Sunday for 14 Sundays. The supplies he needs to buy each Sunday cost $9.75.

 Sam wants to ESTIMATE if $100.00 is enough money to buy all of his supplies. Explain how Sam could ESTIMATE if he has enough money.

2. How much will this milk carton hold?

 A. 1 liter
 B. 5 liters
 C. 10 liters
 D. 20 liters
1. Imagine folding this shape along the dotted lines. Which solid figure would you make?

A. cone
B. cylinder
C. pyramid
D. cube

2. If the first shape were folded in half, which shape would show one symmetrical part?

A.
B.
C.
D.

3. During the track meet, Lisa ran a 1-kilometer race. Linda ran a 500-meter race. How many more meters did Lisa run? (1000m = 1 kilometer)
1. The floor plan of a bedroom is shown below.

Perimeter = the distance around a figure

On the grid, draw a shape that has a perimeter that is greater than the perimeter of the desk but less than the perimeter of the bed.

What is the perimeter of your shape?

2. Duane is putting blocks into a box. How many blocks will the box hold?

3. Which number sentence would show how to solve the above problem?
 A. 4 x 3 = 12
 B. 20 ÷ 4 = 5
 C. 5 x 4 = 20
 D. 5 x 5 = 25
1. Mary has 2 markers. Her teacher, Ms. Kay, has 5 times as many markers as Mary. Which picture shows how many markers Ms. Kay has?

A.
B.
C.
D.

2. Tanya has a pet service. She estimates that it takes more than 25 minutes but less than 30 minutes to walk a dog.

ABOUT how many dogs can she walk in 3 $\frac{1}{2}$ hours?

(60 minutes = 1 hour)

A. 3
B. 4
C. 7
D. 14

3. Each day for 4 days, a science class recorded the number of birds that visited the Science Club bird bath.

<table>
<thead>
<tr>
<th>Birds at the Bath</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
</tr>
<tr>
<td>Tuesday</td>
</tr>
<tr>
<td>Wednesday</td>
</tr>
<tr>
<td>Thursday</td>
</tr>
</tbody>
</table>

Each 〇 stands for 8 birds.

Which question below can be answered using data from the pictograph?

A. The average number of birds that visited the bird bath each day.
B. The time of day the birds visited the bird bath.
C. The amount of food the birds ate each day.
D. The kinds of birds that visited the bird bath each day.
1. Evelyn has a matching game that uses 24 cards. She can arrange the cards on the table in several different ways. Complete this chart to help her decide how to arrange the cards.

<table>
<thead>
<tr>
<th>Row Arrangements</th>
<th>Cards</th>
<th>Columns</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>12</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>?</td>
<td>3</td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>2</td>
<td>24</td>
</tr>
</tbody>
</table>

2. Write the number shown by these blocks.

3. Which multiplication and division sentence matches this array?

A. \(3 \times 4 = 12; \quad 12 \div 12 = 1\)
B. \(3 \times 4 = 12; \quad 12 \div 3 = 4\)
C. \(12 \div 3 = 4; \quad 12 \div 4 = 3\)
D. \(3 \times 4 = 12; \quad 4 \times 3 = 12\)
1. Study how each pair of input and output numbers in this table changes.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

What is the rule that shows how each input number changes to the output number?

2. What is the ordered pair of Point A?

A. (1,2)
B. (0,3)
C. (3,2)
D. (2,1)
1. Erin has 5 red beads, 8 green beads, 6 blue beads and 4 black beads in a box. Each bead is the same size. If she takes one bead out of the box without looking, which color will most likely NOT be chosen?
 A. Black
 B. Blue
 C. Green
 D. Red

2. Study this pattern.
 \[\mathbf{\square} \quad \circ \quad \circ \quad \mathbf{\triangle} \quad \mathbf{\triangle} \quad \mathbf{\square} \quad \circ \quad \circ \quad \mathbf{\triangle} \quad \mathbf{\triangle} \quad \mathbf{?}\quad \mathbf{?} \]

 Which shape comes next?
 A. \(\circ \quad \circ \)
 B. \(\mathbf{\square} \)
 C. \(\circ \)
 D. \(\mathbf{\triangle} \mathbf{\triangle} \)

3. The small measuring cup can hold \(\frac{1}{2} \) cup of water. The large container can hold 2 cups of water.

 Alex needs to fill the large container with exactly 2 cups of water. How many times will he have to fill the small measuring cup and empty it into the large container?
1. The floor plan of a bedroom is shown below. It shows space for a bed and space for a bookshelf.

\[\square = 1 \text{ square unit} \]
Area of rectangle = length \times width

Draw another space on the grid. The space you draw should have an area that is greater than the bookshelf area but less than the bed area. Label the space you draw “dresser”.
1. Kristina is 4 years older than her brother, Pedro. If N represents Kristina’s age, which expression below represents Pedro’s age?
 A. N + 4
 B. N - 4
 C. 4 + N
 D. 4 - N

2. To help complete an art project, Miss Sanford wants to give each of her 34 students 3 paper clips.

 Write the exact number of paper clips Miss Sanford will need.

3. Which is the best unit of measure for the distance you would drive to Tallahassee?
 A. centimeter
 B. decimeter
 C. feet
 D. kilometer
1. The table shows how many students attend two schools.

<table>
<thead>
<tr>
<th>Name of School</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lakeside</td>
<td>88</td>
</tr>
<tr>
<td>Prairie</td>
<td>109</td>
</tr>
</tbody>
</table>

What number is a reasonable ESTIMATE for the total number of students at both schools.

My estimate is ________________

Explain how you got your answer.

2. Which pair of figures is an example of a turn?

A.
 ![Diagram A]

B.
 ![Diagram B]

C.
 ![Diagram C]

D.
 ![Diagram D]
1. How many 100’s are in 9,000?

2. A bathroom floor is being covered with new floor tiles.
 • Each new tile has an area of 1 square foot.
 • Altogether, 60 new tiles will be used.
 • The floor is shaped like a rectangle.
 • To find the area of a rectangle, use the formula Area = length x width

 The length of the floor is 10 feet. What is the width of the floor in feet?

3. Jeff is saving money for a new cookbook. He saves 5 cents the first day and doubles what he saves each day for the next 6 days. What amount of money will Jeff save on the seventh day?

<table>
<thead>
<tr>
<th>Days</th>
<th>Amount Saved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Which pattern completes this table?
 A. 6, 8, 10, 12
 B. 8, 12, 16, 20
 C. 6, 7, 8, 9
 D. 6, 9, 13, 18

2. The figure below has been moved from Location A to Location B.

 ![Location A](image1)
 ![Location B](image2)

 Which word best describes the movement?
 A. flip
 B. slide
 C. turn
 D. reflection

3. Complete the number chain. What number belongs in the box at the end of the chain?

 \[
 (15 \div 3 \times 5 - 9 + 6) \div \underline{} = 11
 \]
1. Imagine spinning this spinner 25 times.

Which letter will the spinner point to most often? Tell why.

2. What angle is formed by the hands of a clock when it is 10:00?

A. Acute
B. Obtuse
C. Right
D. Straight
1. Study this scale.

If 1 square = 4 circles and 1 triangle = 6 circles, how many circles would need to be placed on the other side of the scale to balance the scale?

2. Choose the number sentence you should use to solve this problem.

There are 4 party hats in a package. How many packages should you buy to get 20 hats?
A. $4 + 20 = 24$
B. $20 \times 4 = 80$
C. $20 \div 4 = 5$
D. $20 - 4 = 16$

3. Which set of fractions is ordered from greatest to least?

A. $\frac{1}{3}, \frac{1}{4}, \frac{1}{2}$
B. $\frac{1}{4}, \frac{1}{3}, \frac{1}{2}$
C. $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$
D. $\frac{1}{4}, \frac{1}{2}, \frac{1}{3}$
1. Which figure can be folded to form a cube?
 A.
 B.
 C.
 D.

2. Leah plans to invite 6 of her friends to her birthday party and would like to give each of her friends the same number of party favors without having any leftover. The party favors Leah can buy are shown below.

 - 16
 - 36
 - 46
 - 50

Which box of party favors should Leah buy?

3. Which operations can be used in the boxes below to get the largest result?

 - 1
 - 4
 - 1

 A. + and -
 B. + and +
 C. x and -
 D. x and x
1. Draw a closed figure that has 3 sides and 3 angles. Next to your figure, draw another figure that is congruent.

[Diagram of two congruent triangles]

Name the shapes you drew. __________________________

Tell why the shapes you drew are congruent.

2. Which statement is true?

A. \[\frac{2}{5} < \frac{1}{2} \]
B. \[\frac{2}{5} < \frac{1}{3} \]
C. \[\frac{2}{5} < \frac{1}{4} \]
D. \[\frac{2}{5} < \frac{1}{5} \]
1. A recipe requires $\frac{1}{4}$ stick of butter. Which picture shows how much butter the recipe requires?

 A.

 B.

 C.

 D.

2. While cooking, Marie used these amounts of milk.

 How much milk did she use altogether?

 A. $3\frac{1}{2}$ cups B. $2\frac{1}{4}$ cups C. $\frac{4}{4}$ cups D. $\frac{3}{4}$ cup

3. For a field trip, four vans will carry 19 students to the museum. In each of the first three vans, 5 students will be seated.

 Which number sentence should you choose to find the number of students that will be seated in the last van?

 A. $5 - 4 = 1$
 B. $20 - 19 = 1$
 C. $19 - 5 - 5 = 9$
 D. $19 - (5 \times 3) = 4$
One of Josh’s hobbies is manatee watching. The number of manatees he saw for five days last week is displayed by the bar graph.

Josh also watched manatees on Saturday and Sunday. Use the bar graph data to predict the number of manatees he saw those days. Explain your answer.
1. Mark and Anthony want to share a pack of baseball cards. There are 56 cards. How many does each student get?

2. Which figure represents a slide?

 A.
 B.
 C.
 D.

3. Raye is four years older than her brother Vashon. Six years from now, she will be twenty. How old is Vashon?
 A. 24
 B. 18
 C. 10
 D. 2
1. What number completes the chart?

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Explain how you found your answer.

2. This pictograph shows how many groups of children visited the school library last week.

<table>
<thead>
<tr>
<th>Day</th>
<th>Groups to the Library</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>★ ★ ★</td>
</tr>
<tr>
<td>Tuesday</td>
<td>★ ★</td>
</tr>
<tr>
<td>Wednesday</td>
<td>★ ★ ★ ★ ★ ★</td>
</tr>
<tr>
<td>Thursday</td>
<td>★ ★ ★ ★ ★ ★</td>
</tr>
<tr>
<td>Friday</td>
<td>★ ★ ★ ★ ★ ★</td>
</tr>
</tbody>
</table>

★ = a group of 4 children

Which question below could you answer using this pictograph?
A. What time does the library open in the morning?
B. How many groups of students visited the library on Saturday and Sunday?
C. How many librarians work in the library each day?
D. On which day, did the greatest number of groups visit the library?
1. Emily viewed 297 cars passing through Sarasota in one day. About how many cars would pass through Sarasota on one month at this rate. (1 month = 30 days)

2. Johan bought material at the office supply store. The original price was $28. Each item was }\frac{1}{2}\text{ off the regular price. How much money did Johan save on his purchase?

 A. $56.00
 B. $14.00
 C. $7.00
 D. $2.80

3. Draw a flip of the following shape across the dotted line.

 [Diagram of a shape with a heart and a dotted line]
1. Which letter represents the number \(\frac{1}{2} \)?

2. The distance between Miami and Boca Raton is about:
 A. 45 m
 B. 45 cm
 C. 45 g
 D. 45 km

3. The chart below lists the nine planets on our Solar System. It also gives the number of miles each planet is from the sun.

<table>
<thead>
<tr>
<th>Planet</th>
<th>Distance from the Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth</td>
<td>149,600,000</td>
</tr>
<tr>
<td>Jupiter</td>
<td>778,300,000</td>
</tr>
<tr>
<td>Mars</td>
<td>227.9 million</td>
</tr>
<tr>
<td>Mercury</td>
<td>57.9 million</td>
</tr>
<tr>
<td>Neptune</td>
<td>4,497 million</td>
</tr>
<tr>
<td>Pluto</td>
<td>5,900,000,000</td>
</tr>
<tr>
<td>Saturn</td>
<td>1,427,000,000</td>
</tr>
<tr>
<td>Uranus</td>
<td>2,870 million</td>
</tr>
<tr>
<td>Venus</td>
<td>108.2 million</td>
</tr>
</tbody>
</table>

Using the table above, which planet is the closest to the sun?
 A. Mars
 B. Jupiter
 C. Mercury
 D. Neptune
1. Circle the figure that has a line of symmetry.

<table>
<thead>
<tr>
<th>Figure A</th>
<th>Figure B</th>
</tr>
</thead>
</table>

Explain why the figure you circled has a line of symmetry.

2. Mark is making decorations. Each decoration requires 4 ft. of ribbon. If he has 4 yds. of ribbon, how many decorations can he make?
 - A. 16
 - B. 3
 - C. 1
 - D. 0
1. When Judy went to the store to buy one gallon of orange juice, the store only had quarts of juice. How many quarts did she need to purchase to equal one gallon?

2. Which number sentence goes with $56 \div 7 = 8$

 A. $8 \times 7 = $

 B. $56 - 7 = $

 C. $8 \div 7 = $

 D. $56 + 7 = $

3. Karen and three friends went to the Broward County Fair. Karen paid for all the tickets. Which equation can you use to find the change she received from a $20.00 bill if each fair ticket cost $2.50?

 A. $20.00 - 3($2.50) = N$

 B. $20.00 - 4($2.50) = N$

 C. $20.00 + 4($2.50) = N$

 D. 4($2.50) - $20.00 = N$
1. What one digit divisor would result in a quotient whose digits are all the same?

$\square \square$

$N \div 99$

2. Kim needs to know the area of her bedroom floor to order new rugs. The length is 13 meters and the width is 8 meters. What is the area?

A. 104 square meters
B. 42 square meters
C. 21 square meters
D. 5 square meters

3. One half of the figure is shown below. The dotted line represents a line of symmetry. What would the area of the figure be if the missing portion of the figure was drawn?
1. A pattern of blocks is shown below.

How many blocks will be used to make a tower that is four blocks high?

2. Find the number of units in the perimeter of this shape.

3. The number of fans at a soccer game is 4 tens less than the number shown. How many fans were at the game?

985
1. The days of the week are written on slips of paper.

Monday Tuesday Wednesday
Thursday Friday Saturday
Sunday

All of the slips of paper will be folded and placed in a paperbag. Then without looking, one slip of paper will be taken from the bag. Which day of the week is most likely to be chosen? Tell why.

2. A clown has 18 balloons. What are 2 different ways she can tie them in equal groups?

A. 2 groups of 9 and 3 groups of 4
B. 6 groups of 2 and 2 groups of 8
C. 9 groups of 2 and 2 groups of 8
D. 2 groups of 9 and 3 groups of 6
1. At a neighborhood picnic, a group of adults offered to take the young people to the circus. Mrs. Leigh agreed to pick up the tickets after everyone had signed up. The list is below:

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grandma Jones</td>
<td>72</td>
</tr>
<tr>
<td>Ms. Jones</td>
<td>28</td>
</tr>
<tr>
<td>Jessica</td>
<td>6</td>
</tr>
<tr>
<td>Jane</td>
<td>4</td>
</tr>
<tr>
<td>Joan</td>
<td>4</td>
</tr>
<tr>
<td>Roberto</td>
<td>8</td>
</tr>
<tr>
<td>Hosea</td>
<td>10</td>
</tr>
<tr>
<td>Mr. Leigh</td>
<td>47</td>
</tr>
<tr>
<td>Mrs. Leigh</td>
<td>42</td>
</tr>
<tr>
<td>Susie</td>
<td>6</td>
</tr>
<tr>
<td>James</td>
<td>17</td>
</tr>
<tr>
<td>Jon</td>
<td>24</td>
</tr>
</tbody>
</table>

Count the number of people in each bracket and write the number in the chart below.

CIRCUS TICKETS NEEDED

<table>
<thead>
<tr>
<th>Age Bracket</th>
<th>Number of Tickets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Citizen (55 and older)</td>
<td></td>
</tr>
<tr>
<td>Adults (19-54)</td>
<td></td>
</tr>
<tr>
<td>Students (13-18)</td>
<td></td>
</tr>
<tr>
<td>Children (5-12)</td>
<td></td>
</tr>
<tr>
<td>Preschool (0-4)</td>
<td></td>
</tr>
</tbody>
</table>
Grade 4 Day 30 continued

On the grid below, make a bar graph showing the number of tickets needed in each age bracket. Be sure to:

* title the graph
* label the axes
* use appropriate and consistent scales
* accurately graph the data

Use information from your bar graph, write two statements that compare the data Mrs. Leigh used to purchase the circus tickets.
1. Which fraction is equivalent to .75?

A. \(\frac{1}{4} \)
B. \(\frac{1}{2} \)
C. \(\frac{2}{3} \)
D. \(\frac{3}{4} \)

2. Michael biked and ran a total of 15 hours. He biked twice as long as he ran. How long did he run? Explain your answer.
1. Which point best represents 3.6 on the number line?

 A. B. C. D. E. F. G.

 1 2 3 4

2. Fabio is preparing to run another race for charity. He has already run 4 kilometers. How many meters has he run so far?
 (1000 m = 1 km)

3. Jordan rotated the figure below 90 degrees clockwise.

 [Diagram of a rotated triangle]

 What does the figure now look like?

 A. B. C.
1. A class of students was asked to vote for their favorite pet. The number of votes each pet received is shown in the table.

<table>
<thead>
<tr>
<th>Favorite Pets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cats</td>
<td>4</td>
</tr>
<tr>
<td>Dog</td>
<td>6</td>
</tr>
<tr>
<td>Bird</td>
<td>2</td>
</tr>
<tr>
<td>Hamster</td>
<td>0</td>
</tr>
<tr>
<td>Fish</td>
<td>8</td>
</tr>
</tbody>
</table>

Complete the pictograph below showing the number of votes each pet received. Be sure to:
* choose a symbol
* tell how many votes each symbol stands for
* accurately graph your data

<table>
<thead>
<tr>
<th>Favorite Pets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat</td>
<td></td>
</tr>
<tr>
<td>Dog</td>
<td></td>
</tr>
<tr>
<td>Bird</td>
<td></td>
</tr>
<tr>
<td>Hamster</td>
<td></td>
</tr>
<tr>
<td>Fish</td>
<td></td>
</tr>
</tbody>
</table>

2. Which measurement best describes the contents of the bottle?

A. 2 meters
B. 2 liters
C. 2 grams
D. 2 kilograms
1. A recipe calls for \(1 \frac{1}{2}\) cups of flour, 2 eggs and \(\frac{1}{4}\) cup of sugar. If you want to double the flour, how much will you need?

 A. \(\frac{1}{8}\) cup
 B. \(\frac{1}{4}\) cup
 C. 2 cups
 D. 3 cups

2. A jar of mustard holds 32 fluid ounces. How many pints does it hold?
 (1 pint = 16 ounces)

3. Find the value of \(x\) in the following expression
 \((12 \div x) + (12 \div x) = 8\)

 \(x = \underline{}\)
1. Find the value of Y

$$28 \div Y = 7$$

$Y = \underline{}$

2. What operations belong in the boxes to create the largest number?

$6 \underline{} 3 \underline{} 5 =$

A. $+ \text{ and } +$
B. $+ \text{ and } -$
C. $\times \text{ and } -$
D. $\times \text{ and } +$

3. On one side of a balance scale Juanita placed an 18 gm weight. On the other side of the scale she placed 6 dimes. Each dime is the same weight.

How much does one dime weigh?
A. 3 gm
B. 12 gm
C. 24 gm
D. 108 gm
1. In the space below, draw 3 different triangles.

```
•••••••
••••••
•
••••••
•
•••••
••
••••••
•
••••••
•
••••••
•
••••••
```

Tell why the figures you drew are triangles?

2. A group of students was asked to name their favorite kind of food. Their answers to the question are shown in this chart.

```
<table>
<thead>
<tr>
<th>Types of Food</th>
<th>Pizza</th>
<th>Tacos</th>
<th>Hamburgers</th>
<th>Hot Dogs</th>
<th>Salad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

What is the range of the data?
A. 40
B. 8
C. 7
D. 5
1. A cook uses 3 cups of white sugar and N cups of brown sugar. Write an expression for the total number of cups of sugar he used.

2. Look for a pattern in this machine:

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
</tr>
</tbody>
</table>

What is the rule being used?

3. Julia is planting a spring garden. She wants half of the garden to be flowers. She also wants half of the flower area to be daisies. How much of the garden area are daisies?

A. \(\frac{1}{2}\)
B. \(\frac{1}{3}\)
C. \(\frac{1}{4}\)
D. \(\frac{1}{8}\)
1. Which fraction is the least?
 A. $\frac{2}{5}$ B. $\frac{3}{2}$ C. $\frac{3}{5}$ D. $\frac{2}{3}$

2. Selma purchased 12 gallons of gas. She paid $24.00. How much was each gallon?

3. Antonio is having a party. He invited 24 people. Use the fewest number of square tables possible. 4 people can sit at each square table. How many tables would he need to seat all of the people?
1. If you divide the number of dimes in 5 dollars, by the number of pennies in a nickel, what is your quotient?
 A. 50
 B. 25
 C. 15
 D. 10

2. Gas costs $1.25 per gallon. Sunyi has $10.00. How many gallons of gas can she buy?
 A. 11
 B. 10
 C. 9
 D. 8

3. Using the chart below: Which student has the lowest mode?

 Student Test Scores

<table>
<thead>
<tr>
<th>Student</th>
<th>Test Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane</td>
<td>100, 65, 100, 55, 60</td>
</tr>
<tr>
<td>Mary</td>
<td>95, 40, 90, 85, 40</td>
</tr>
<tr>
<td>Sarah</td>
<td>80, 80, 80, 80, 80</td>
</tr>
<tr>
<td>Kim</td>
<td>70, 95, 70, 70, 95</td>
</tr>
</tbody>
</table>

 A. Mary
 B. Jane
 C. Sarah
 D. Kim
1. Ms. Columbo’s class voted on where to go for a field trip. The votes are tallied on the chart.

<table>
<thead>
<tr>
<th>Place</th>
<th>Number of Votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Epcot</td>
<td></td>
</tr>
<tr>
<td>Flagler Museum</td>
<td></td>
</tr>
<tr>
<td>Metro Zoo</td>
<td></td>
</tr>
<tr>
<td>St. Augustine</td>
<td></td>
</tr>
</tbody>
</table>

On the grid below, make a bar graph that displays the data. Be sure to:
- title the graph
- label the axes
- use appropriate and consistent scales
- accurately graph the data

2. How many rectangles are in this design?
 - A. 10
 - B. 8
 - C. 7
 - D. 5
1. I am a triangle with only 2 equal sides. What kind of a triangle am I?

2. Zack is standing in the middle of a line of people waiting to go into the movies. 6 people are lined up behind Zack. How many people are in line?

3. At noon the temperature in Miami Beach was 92 degrees. By midnight it had dropped to 78 degrees. What is the difference in the temperature from noon to midnight?
1. On one side of a balance scale, Harry placed a 10 gm weight. On the other side he placed 5 cubes. Each cube weighs the same. How much does one cube weigh?
 A. 50 gm
 B. 15 gm
 C. 5 gm
 D. 2 gm

2. Draw a line of symmetry on the figure below.

 ![Diagram of a figure with a line of symmetry]

 In the space below, explain why your line demonstrates symmetry.
1. At a birthday party, there were three flavors of ice cream: vanilla, chocolate and strawberry. If each child could have only 2 scoops, how many different combinations were possible?

Make an organized list to show how you arrived at this answer.

2. John ate 20 cookies. If he had eaten 1 more cookie, he would have eaten three times as many cookies as Fran. How many cookies did Fran eat?
1. Latasha scored 90, 100, 75, and 55 on her Florida spelling tests. What was her mean (average) score?

2. In the library there are five rows of books.

 The top row has 30 books.
 The next row has 27 books.
 The third row has 23 books.
 The second row has 18 books.

 If the pattern continues, how many books are in the bottom row?

 Explain why.
1. Dana has a blue shirt, a white shirt, and a red shirt. She also has black pants, green pants, and yellow pants. How many outfits can Dana make?

Make an organized list showing how you determined your answer.

2. Which pair of coordinates should Pablo plot to make a square?

A. (0,2) and (0,6)
B. (2,6) and (6,6)
C. (0,2) and (6,0)
D. (2,0) and (6,0)
1. At lunch time Max sold 9 lemonades for 20 cents each and 4 coffees for 25 cents each. How much money did he make at lunch time?
 A. $1.80
 B. $2.25
 C. $2.80
 D. $3.00

2. If it is 10°F, what would you most likely be able to do?
 A. Swim
 B. Go surfing
 C. Ice skate
 D. Fly a kite

3. Congruent polygons are the exact same size and shape. Which pair of polygons are congruent?
 A.
 B.
 C.
 D.

1. Jose plotted points D,E on the coordinate grid below:

Which of these pairs of coordinates should Jose plot to make a rectangle?
A. (3,6) and (6,3)
B. (4, 4) and (7,4)
C. (5,4) and (2,4)
D. (4,5) and (4,2)

2. There are 8 people coming for dinner. How would you divide the food evenly among all of the people?

16 ears of corn
8 potatoes
24 ounces of beans
4 pounds of turkey
1 apple pie
Which shapes contain a line of symmetry?

A.

B.

C.

D.

List your answers:

Why did you choose these shapes?
1. Which number represents 1,000 more than 763,296?
 A. 863,296
 B. 773,296
 C. 764,296
 D. 763,396

2. The time shown on this clock is closest to:
 A. 2:00
 B. 2:30
 C. 3:00
 D. 3:30

3. Congruent polygons are the same size and the same shape. Which shape is congruent to
 A.
 B.
 C.
 D.

A.
B.
C.
D.
1. Meg has $25.00. She wants to buy 4 headbands for $6.35 a piece. Does she have enough money? Explain your answer.

2. Similar polygons have the same shape but are different sizes. Which pair of polygons are similar?

 A. △ △
 B. ○ ∪
 C. △ □
 D. □ □
1. The small measuring cup can hold \(\frac{1}{4} \) cup of milk. The large container can hold 1 cup of milk.

Juanita needs to fill the large container with exactly 1 cup of milk.
How many times will she have to fill the small measuring cup and empty it into the large container?
A. 6
B. 5
C. 4
D. 3

2. Maxine runs a car wash business. She estimates that it takes more than 50 minutes but less than 55 minutes to wash a car.
ABOUT how many cars can she wash in \(4 \frac{1}{2} \) hours?
A. 2
B. 4
C. 6
D. 8

3. What is 3 hundred thousand less than 487,912?
1. Five eighths of Carlos’s 8 baseball cards are Marlins players. How many cards are NOT Marlins?

2. The rectangular playground at Everglades School has a perimeter of 90 meters. A possible length and width for this playground is:
 A. 30 m length, 15 m width
 B. 40 m length, 20 m width
 C. 50 m length, 10 m width
 D. 40 m length, 50 m width

3. Which is the best unit of measure for the distance you would travel to another county?
 A. centimeter
 B. decimeter
 C. liters
 D. kilometer
1. Squares are arranged in the following pattern:

Copy and complete the chart:

<table>
<thead>
<tr>
<th>Number of Squares</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perimeter</td>
<td>4</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. How many squares would be needed for a perimeter of 14?

3. Look at the chart above. Complete the chart.

Write the rule.
1. Which pair of polygons shows a 90° turn clockwise?

A.

B.

C.

D.

2. Alexis has 7 red chips, 3 blue chips, 9 green chips, and 2 black chips in a bag. Each chip is the same size. If she takes one chip out of the bag without looking, which color will most likely be chosen?

A. red
B. black
C. green
D. blue

3. Which operations can be used in the boxes below to get the largest result?

4 2 1
1. How many 10’s are in 800?

2. The den floor is being covered with new floor tiles.
 * Each new tile has an area of 1 square foot.
 * Altogether, 90 new tiles will be used.
 * The floor is shaped like a rectangle.
 * To find the area of a rectangle, use the formula:
 \[
 \text{Area} = \text{length} \times \text{width}
 \]
 * The width of the floor is 9 feet.

 What is the length of the floor in feet?

3. A pattern of blocks is shown below.

 How many blocks will be used to make a tower that is five blocks high?
1. The gamekeeper counted 239 monkeys in a troop. About \(\frac{1}{2} \) of those monkeys were babies. ABOUT how many babies are there?

2. A basket of blueberries could be weighed using what units?
 A. grams
 B. liters
 C. gallons
 D. meters

3. What is the temperature on the thermometer?
 A. 50° F
 B. 55° F
 C. 70° F
 D. 85° F
1. The baker had 3 pans of rolls in the oven. One pan was \(\frac{3}{4} \) full, one was \(\frac{1}{4} \) full, and one was \(\frac{3}{12} \) full. Are any of the pans filled equally?

 Explain your answer.

2. A group of students was asked to name their favorite subject. The answers to the question are shown in this chart.

<table>
<thead>
<tr>
<th>Favorite Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
</tr>
<tr>
<td>Reading</td>
</tr>
<tr>
<td>Spelling</td>
</tr>
<tr>
<td>Social Studies</td>
</tr>
<tr>
<td>Science</td>
</tr>
<tr>
<td>Swimming</td>
</tr>
</tbody>
</table>

 What is the range of the data?
 A. 12 B. 10 C. 7 D. 5

3. How many ways can Gino choose 1 drink and 1 dessert?

 Show each way.
1. Juan drew a picture. It is 24 inches long and 18 inches wide. He wants to frame his picture. What length of wood does Juan need?

2. You have 5 quarters and 6 dimes in your pocket. ABOUT how much money do you have?
 A. $1.00
 B. $2.00
 C. $3.00
 D. 4.00

3. Complete the number chain. What number belongs in the box at the end of the chain?

 \[(5 \times 3 \times 2 - 8 + 2) \div \square = 2\]

 A. 12
 B. 9
 C. 8
 D. 7
1. Ted is laying tile. The room is 12 feet x 10 feet. How many square feet of tile does he need? (Area = length x width)

2. Which shape is the flip of Heart?

 A. B.

 C. D.

3. Elana’s dog had eight puppies. She gave two puppies to a friend, one puppy to her teacher, and three puppies to her neighbor. Which number sentence should you choose to find the number of puppies Elena has left?

 A. 8 - 2 - 1 - 3 = 2
 B. 8 - 2 + 1 + 3 = 10
 C. 8 + 2 + 1 - 3 = 8
 D. 8 + 2 + 1 + 3 = 14
1. Jose wants to give each of his 7 friends the same number of baseball cards. The packages of baseball cards Jose can buy are shown below.

| 15 baseball cards | 20 baseball cards | 35 baseball cards | 40 baseball cards |

Which package of cards should Jose buy?
A. 15 baseball cards
B. 20 baseball cards
C. 35 baseball cards
D. 40 baseball cards

2. This table indicates scores on Robert’s science tests.

| Scores | 92 | 88 | 91 | 88 |

A. What was the mode?

B. What was the range?

Range = the difference between the lowest number and the highest number.

Mode = number which occurs most frequently.
1. Roger is putting blocks into this box. How many blocks will the box hold?

Which number sentence would show how to solve this problem?
A. $3 \times 3 = 9$
B. $9 \div 3 = 3$
C. $5 \times 3 = 15$
D. $3 \times 4 = 12$

2. Look at the table below.

<table>
<thead>
<tr>
<th></th>
<th>9</th>
<th>18</th>
<th>27</th>
<th>36</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete the table and explain how you arrived at your answer.
1. There are 7 seals resting on each of 7 rocks. How many seals in all?

Write a number sentence which can be used to solve this problem?

2. Which shape is a slide of this polygon?

 A.
 B.
 C.
 D.

3. Study this scale.

If 1 square = 4 circles, and 1 triangle = 6 circles, how many circles would need to be placed on the other side of the scale to balance the scale?
A. 11
B. 6
C. 5
D. 4
1. The sheep pasture is fenced in a rectangle 72 feet x 285 feet. How much fencing is needed?

2. Carlos wants to give each of his 8 friends the same number of football cards. The packages of football cards Carlos can buy are shown below.

Which package of cards should Carlos buy?
A. 18 football cards
B. 20 football cards
C. 35 football cards
D. 40 football cards

3. Each day for three days, a manager recorded the number of cards sold by the new salesman.

Which question below can be answered using data from the pictograph?
A. What is the average number of cars the other sales people sold on Monday?
B. How does the number of cars sold by the new salesman on Wednesday compare to the number of cars he sold on Monday and Tuesday?
C. How long was the length of the new salesman’s lunch break?
D. How satisfied is the manager with the new salesman’s work?
1. Which pair of coordinates should Jose plot to make a rectangle?

A. (2,4) and (5,4)
B. (4,2) and (4,5)
C. (0,0) and (3,0)
D. (1,2) and (4,2)

2. The temperature is 90 degrees F. Would you be likely to ice skate outside?

Explain.
1. The temperature in South Florida during the day in July would be about:
 A. 55°F
 B. 65°F
 C. 85°F
 D. 115°F

2. The square-shaped playground at Sunshine Elementary School has a perimeter of 80 meters. What is the length?

3. Which set of fractions is ordered from greatest to least?
 A. \(\frac{1}{2}, \frac{1}{4}, \frac{1}{6} \)
 B. \(\frac{1}{6}, \frac{1}{4}, \frac{1}{2} \)
 C. \(\frac{1}{6}, \frac{1}{2}, \frac{1}{4} \)
 D. \(\frac{1}{4}, \frac{1}{6}, \frac{1}{2} \)
1. Order these fractions from \textbf{least to greatest}.
\[
\frac{1}{6} \quad \frac{5}{6} \quad \frac{2}{6} \quad \frac{3}{6}
\]

2. Which angle is not a right angle?

A.
B.
C.

3. Mike drew a grid of his neighborhood.

\begin{array}{cccccccc}
7 & \bullet \\
& & & & \text{School} & & & & \\
6 & \bullet \\
& & & & \text{Post Office} & & & & \\
5 & \bullet \\
& & & & \text{Mike’s home} & & & & \\
4 & \bullet \\
3 & \bullet \\
2 & \bullet \\
1 & \bullet \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \\
\end{array}

A. What is located at (1,5)?
B. What pair shows the location of Mike’s home?
C. Is Barb’s house closer to the Hot Dog Stand or the Post Office?
1. Draw 2 different polygons and label the number of sides and the number of angles.
Draw pictures here:

A.

B.

_______sides

_______sides

_______angles

_______angles
1. Draw this symmetrical shape. Draw a line of symmetry.

![Hexagon](image)

Explain why you drew the line where you did.

2. Ellen’s cat had 10 kittens. She gave 3 kittens to a friend, 1 kitten to her teacher, and 2 kittens to her neighbor.

Which number sentence should you choose to find the number of kittens Ellen has left?

A. $10 - 3 - 1 - 2 = 4$
B. $8 - 2 + 1 + 3 = 10$
C. $10 + 2 + 1 + 2 = 15$
D. $10 + 3 + 1 - 3 = 10$
1. Which number has a 7 that represents 7,000?
 A. 897,000
 B. 879,000
 C. 870,700
 D. 890,070

2. The musician performs at Magic Kingdom every 30 minutes. If his first performance is at 2:15, when are his next three performances?

3. Perpendicular lines form right angles. Which lines are perpendicular?
 A. B. C. D.
1. There are 1,014 reptiles and 1,104 birds in the zoo. Use the symbol (>).
 Compare these numbers.

2. A stick of margarine or butter is measured using which units?
 A. ounces
 B. liters
 C. quarts
 D. pints

3. $7 \times 8 = ___$ will help you solve which equation?
 A. $56 \div 8 = ___$
 B. $54 \div 7 = ___$
 C. $63 \div 7 = ___$
 D. $72 \div 8 = ___$
1. How much liquid would a small bowl hold?
 A. 1 cup
 B. 1 pound
 C. 1 liter

2. Basketballs were on sale for $8.00. Ted bought 4. How much did he spend in all?
 A. $16.00
 B. $16.80
 C. $24.00
 D. $32.00

3. This is an equilateral triangle. All sides are the same. What is the perimeter?
1. Carol bought 2 popcorns for $1.75 each, 3 candy bars for $0.75 each, and 3 sodas for $1.25 each. Write an equation that tells how to find the total amount spent (N).

2. What type of angle is formed by the hands of a clock when it is 6:55?

 A. Acute
 B. Obtuse
 C. Right
 D. Straight
1. LeShawn walks about $\frac{1}{4}$ mile to school each day. If he walks to and from school twice one day, about how far has he walked?

2. What is the correct ordered pair for point B?

 A. (2,2) B. (4,1) C. (5,6) D. (9,9)

3. The weatherman wants to know the temperature. What instrument is used for that?
 A. balance scale
 B. meter stick
 C. ruler
 D. thermometer

1. Mr. Brown wants to give each of his 6 guests party favors. He has a bag of 42 party favors. Grid the exact number of party favors Mr. Brown can give each guest.

2. During a track meet Alicia ran a 1-kilometer race. Bebe ran a 300-meter race. How many more meters did Alicia run?

3. Eddie is saving money for a new CD. He saves $0.10 the first day and doubles what he saves each day for 6 days. What amount of money will Eddie have saved on the sixth day?

<table>
<thead>
<tr>
<th>Days</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount Saved</td>
<td>$.10</td>
<td>$.20</td>
</tr>
</tbody>
</table>
1. Which shape is a pentagon?

 A.
 B.
 C.
 D.

2. When you run the 50 yard dash you could be timed in:
 A. seconds
 B. minutes
 C. hours

3. Jars A and B have jelly beans inside. The jars are identical in size. If Jar A has 250 jelly beans, ABOUT how many jelly beans are in jar B?
 Explain.
1. Lois is painting the garage floor. It is 25 x 20 feet. What is the square footage? (Area = length x width)

Explain.

2. How many triangles are in this design?

A. 4
B. 5
C. 6
D. 7
1. Hilda has $9.50 in dimes. How many dimes does she have?
 A. 9
 B. 95
 C. 190
 D. 950

2. Tom is painting the fence that surrounds his backyard. The backyard is 108 ft x 36 ft. How many feet of fencing will he be painting?

3. Rita is 3 years older than her sister Rosa. If N represents Rita’s age, which expression below represents Rosa’s age?
 A. N - 3
 B. 3 - N
 C. N + 3
 D. 3 + N
1. What is the value of the 6 in 765,320?
 A. 600
 B. 6,000
 C. 60,000
 D. 600,000

2. What is the perimeter of this shape?

3. Which angle is a right angle?
 A.
 B.
 C.
 D.
1. You slept $\frac{1}{3}$ of a 24 hour day. How long did you sleep?

2. A small paperback book would be measured in:
 A. square inches
 B. square feet
 C. square yards
 D. square miles

3. Parallel lines will never cross.
 Which shape has parallel lines?

 A.
 B.
 C.
 D.
1. What is the reflection of this shape?

Draw the reflection at the dotted line.

Explain why this is a reflection.

2. Which operations can be used in the boxes below to get the smallest result?

 1 [] 2 [] 1

A. + and -
B. + and +
C. x and -
D. x and x
1. Measure this banner to the nearest centimeter:

MATHEMATICS IS FUN!

2. Natalie has $8.00 in quarters. How many quarters is that?

 A. 12
 B. 16
 C. 32
 D. 64

3. Study this scale.

 If 1 square = 2 circles and 1 triangle = 3 circles, how many circles would need to be placed on the other side of the scale to balance the scale?

 A. 7
 B. 6
 C. 5
 D. 4

1. There are 26 meatballs in each of 7 bowls. How many meatballs is that in all?

2. Would a child weigh:
 A. 65 ounces
 B. 65 pounds
 C. 65 grams
 D. 65 milligrams

3. Which shape does not have a right angle?

 A.
 B.
 C.
 D.

 (Diagram of shapes: A. Triangle, B. Rectangle, C. Pentagon, D. Triangle)
1. The cows graze in a pasture that is 475 ft. x 285 ft. How many feet of fencing is that?

 475 ft.

 285 ft.

2. How much does a mouse weigh?
 A. two ounces
 B. two pounds
 C. two kilograms

3. The gamekeeper tagged 79 elephants. 25 were babies. ABOUT how many are NOT babies?
 A. 40
 B. 50
 C. 70
 D. 80
1. A bag of grapefruit and 1 mango weigh the same as 10 mangoes. If one mango weighs 8 ounces, how much does the bag of grapefruit weigh?

Explain how you obtained your answer.

2. Marlene is making tablecloths. Each tablecloth requires 2 yards of material. If she has 48 feet of material, how many tablecloths can she make? (3 feet = 1 yard)
 A. 7
 B. 8
 C. 16
 D. 46
1. There are 72 people in the theater. They are divided evenly among 9 rows. How many people are in each row?
 A. 81
 B. 72
 C. 63
 D. 8

2. I put stew on the stove at 1:00. I need to stir it every 15 minutes for one hour. What times should I stir it?

3. What point is located at (7,5)?

 A. 81
 B. 72
 C. 63
 D. 8

 I put stew on the stove at 1:00. I need to stir it every 15 minutes for one hour. What times should I stir it?

 What point is located at (7,5)?

 A. B
 B. C
 C. D
 D. F
1. A quadrilateral has 4 sides.
Draw a quadrilateral.

Explain why it is a quadrilateral.
1. The area of a dollar bill would be measured in:
 A. square inches
 B. square feet
 C. square yards
 D. square miles

2. I have 2 twenty dollar bills, 3 five dollar bills, 3 quarters and 2 dimes. How much money does this total?

3. Complete the number chain. What number belongs in the box at the end of the chain?
 \[4 \times 3 = \boxed{} \times 2 = \boxed{} - 8 = \boxed{} + 2 = \boxed{} \div \boxed{} = 2\]
 A. 10
 B. 9
 C. 8
 D. 7
1. The seamstress has 99 buttons to sew onto 33 suit jackets. Each jacket will have the same number of buttons. How many buttons will she sew onto each jacket? Show the equation and explain.

2. The figure below has been moved from Location A to Location B.

Which word best describes the movement?
A. flip
B. slide
C. turn
D. rotation
1. Marco has 46 packages of baseball cards. There are 8 cards in each package. How many cards are there in all?

2. Which multiplication sentence can you use to find $63 \div 9 = ?$
 A. $7 \times 6 = 42$
 B. $9 \times 7 = 63$
 C. $9 \times 9 = 81$
 D. $10 \times 9 = 90$

3. The doctor wants to weigh the baby. What tool will be used to weigh the baby?
 A. yard stick
 B. thermometer
 C. scale
 D. measuring cup
1. Which number is 600 more than 473,186?
 A. 437,186
 B. 473,786
 C. 437,126
 D. 497,186

2. The temperature is 0 degrees Celsius. What would be appropriate clothing to wear if you were going to play outside?

3. The Marlin’s attendance for the past three games was seventy-eight thousand, three hundred six. Which number shows that total?
 A. 78,036
 B. 70,836
 C. 78,360
 D. 78,306
1. Amanda has a job delivering newspapers. The table below shows how many days it takes Amanda to earn different amounts of money. Look at the table below. How much money will Amanda earn on the seventh day?

Amount of Money Amanda Earns for Delivering Newspapers

<table>
<thead>
<tr>
<th>Number of Days Worked</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount Earned</td>
<td>$1.50</td>
<td>$3.00</td>
<td>$4.50</td>
<td>$6.00</td>
<td>$7.50</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

A. $15.00 C. $9.00
B. $10.50 D. $7.00

2. The fourth grade students at Broward Elementary voted for their favorite hobby. The double bar graph below shows the results of the vote:

How many more boys voted for stamp collecting than for painting?
A. 5
B. 10
C. 20
D. 25
1. Could you drink a gallon of milk at lunch?

 Explain.

2. The small measuring cup can hold \(\frac{1}{3} \) cup of milk. The large container can hold 1 cup of milk. Juanita needs to fill the large container with exactly 1 cup of milk. How many times will she have to fill the small measuring cup and empty it into a large container?
 A. 6
 B. 5
 C. 4
 D. 3
1. You are going to lay sod in your yard. The yard is 30 feet long and 20 feet wide. The gridded areas in the yard have already been filled with sod as shown in the diagram. The sod sections are 1 foot by 1 foot. How many sections would you need to complete the yard?

2. Which sentence could be true?
 A. The baby weighs 7 pounds.
 B. The baby weighs 7 ounces.
 C. The baby weighs 7 grams.
 D. The baby weighs 7 meters.

3. Which capital letter has only one line of symmetry?
 A. O
 B. H
 C. V
 D. X
1. Mrs. Hernandez wants to give each of her 5 guests, party favors. She has a bag of 25 party favors.

Grid the exact number of party favors Mrs. Hernandez can give each guest.

2. During a track meet, Andrea ran a 1-kilometer race. Betty ran a 600 meter race. How many more meters did Andrea run?

3. Alan is saving money for a new bicycle. He saves $0.15 the first day and doubles what he saves each day for 6 days. What amount of money will Alan save on the sixth day?

<table>
<thead>
<tr>
<th>Days</th>
<th>Amount Saved</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Which statement accurately compares the numbers 376814 and 279,917?
 A. 376,814 < 279,917
 B. 376,814 > 279,917
 C. 376,814 = 279,917

2. Ricardo created a pattern with cookies that looked like this:

 ![Cookie Pattern](image)

 How many cookies will be in his next group?

3. Roberto and Christian divided their play area in school. During playtime, they will play in each area. Look at the play area they divided below.

 ![Play Area Diagram](image)

 Area of Rectangle = Length \times Width

 Find the square feet in the dress-up area and reading area.
 A. 25 square feet B. 55 square feet
 C. 61 square feet D. 71 square feet
1. What is the perimeter and area of this garden?
(Perimeter = distance around the figure)
(Area = length x width)

12 yds.

8 yds.

A. Perimeter =
B. Area =

2. Which measurement best describes the weight of the paper clip?
A. 1 kilogram
B. 1 gram
C. 1 meter
D. 1 liter
1. Which expression is true?
 A. \(\frac{3}{4} = \frac{7}{8} \)
 B. \(\frac{3}{4} = \frac{6}{8} \)
 C. \(\frac{3}{4} > \frac{6}{8} \)
 D. \(\frac{3}{4} < \frac{6}{8} \)

2. The population of the alligators grew quickly. How many more alligators were living in Florida in 1990 than in 1950?
3. The bar graph shows the number of leaves collected on the lawn by four students in Mrs. Owen’s class. The number of leaves represented by N in the inequality shown below.

$$N < 10$$

Which students have their leaf collection represented by N?
A. Mark and Jamal
B. Stella and Brian
C. Mark and Stella
D. Stella and Jamal
1. This table shows the scores earned by Alfonse on the spelling tests.

<table>
<thead>
<tr>
<th>Scores:</th>
<th>100</th>
<th>95</th>
<th>85</th>
<th>80</th>
<th>80</th>
</tr>
</thead>
</table>

What was the mode of Alfonse’s spelling test scores?
A. 88
B. 85
C. 80
D. 20

2. Adam wants to give all 30 people in his class $\frac{1}{3}$ yard of red ribbon to make a bow. How many yards of ribbon does Adam need to buy?

3. Mario is going to buy a poster for his room. He wants to leave a 3-foot space between the edges of the poster and the edges of the wall.

```
\begin{center}
\begin{tikzpicture}
  \draw[->] (0,0) -- (9,0) node[above] {3 ft} node[below] {12 ft};
  \draw[->] (0,0) -- (0,9) node[left] {9 ft};
  \draw[->] (0,3) -- (9,3) node[right] {3 ft};
  \draw[->] (6,0) -- (6,3) node[left] {3 ft};
\end{tikzpicture}
\end{center}
```

Find the area of the poster.
A. 84 square feet
B. 54 square feet
C. 18 square feet
D. 12 square feet
1. Matt ate $\frac{1}{2}$ of a pizza. Jon ate $\frac{2}{3}$ of a pizza. Carlos ate $\frac{2}{4}$ of a pizza. Which boys ate the same amount of pizza?

2. Which sentence could by true?
 A. The man is 6 meters tall.
 B. The man is 6 feet tall.
 C. The man is 6 centimeters tall.
 D. The man is 6 kilograms tall.

3. A class recently held a vote. Gina, Al, and Ray were chosen to represent their class in the election. 36 students voted. Al won by six votes, and the other two candidates tied. How many votes did Al get?
 A. 5 votes
 B. 8 votes
 C. 10 votes
 D. 16 votes
1. Sam ate $\frac{1}{3}$ of the pizza. Carla ate the rest. How much did Carla eat? Who ate the most? Explain.

2. Which figure can be folded to form a square pyramid?
 A.
 B.
 C.
 D.
1. A trip from Earth to the Sun covers a distance of 93,000,000 miles. This distance is represented by N. Which of the following would represent a round trip?
 A. $N + 2$
 B. $N - 2$
 C. $N ÷ 2$
 D. $2N$

2. Which two shapes are congruent?

3. Jessica wants to make a wooden fence to hold a puppy. The fence will be 80 m by 50 m. It costs $0.50 for each meter of fence. How much will it cost to fence the yard?
1. Bryan selected 5 boxes of cereal from the store. The highest priced box was $4.00. The lowest priced box was $2.00. Which of the following is a possible total cost for all 4 boxes?
A. $8.00
B. $21.00
C. $14.00
D. $4.00

2. The circle graph below represents Rebecca’s daily activities. If Rebecca slept for $\frac{1}{3}$ of the day, what part of the graph shows the part of the day she slept?

 ![Circle Graph]

A. Y
B. V
C. W
D. Z

3. Which triangles are congruent?
1. Which is less than \(\frac{1}{2} \)?
 A. \(\frac{50}{100} \)
 B. \(\frac{3}{10} \)
 C. \(\frac{15}{20} \)
 D. \(\frac{25}{50} \)

2. A tank of tropical fish must contain at least 1 gallon of water for each 1 inch length of the fish kept in it. An angelfish is approximately 4 inches in length. If a tank has 5 angelfish, how many gallons of water must it contain?

3. Which circle graph best represents the data given on the table?
 A.
 B.
 C.
 D.
1. Is it possible for a child to drink one liter of water in one day? Explain.

2. A recipe requires $\frac{1}{2}$ of a block of cheese. Which picture shows how much cheese the recipe requires.

 A.
 B.
 C.
 D.
Explain the relationship between the two polygons:
1. The following table lists the presidents and the age at which they were inaugurated.

 George Washington 57
 John Adams 61
 Thomas Jefferson 57
 James Madison 57
 James Monroe 58

 Based on the above information, what is the mode of their ages?

2. Which fractions are equivalent to $\frac{1}{2}$?
 A. $\frac{49}{98}$
 B. $\frac{3}{6}$
 C. $\frac{7}{14}$
 D. $\frac{21}{40}$

3. The Sioux Indians often designed their beads in the shape of a dragonfly. What is the area of this shape?

 A. 14 square units
 B. 15 square units
 C. 17 square units
 D. 20 square units
1. Order from greatest to least.

\[2 \frac{1}{4} \quad 1 \frac{3}{4} \quad 1 \frac{1}{4} \quad 2 \]

2. Which angles appear to be congruent?

A. 1 and 2
B. 2 and 3
C. 3 and 4
D. 2 and 4

3. Dee is 58 years old. April is \(\frac{1}{2} \) of Dee’s age. How old is April?
A. 24
B. 29
C. 32
D. 116
1. Find all of the shapes with parallel lines.

![Shapes with parallel lines]

Which shapes did you choose?

Explain why you chose those shapes.

2. Elaine runs a car wash business. She estimates that it takes more than 45 minutes but, less than 50 minutes to wash a car.

ABOUT how many cars can she wash in $3 \frac{1}{2}$ hours?

60 minutes = 1 hour

A. 2
B. 4
C. 6
D. 8
1. How many pairs of congruent sides does a rectangle have?

2. Jake, the goalie, saved \(Y \) goals from scoring. Paul saves one more than twice as many saves as Jake. How many saves did Paul have?
 A. \(Y + 1 + 2 \)
 B. \(Y + 2 \)
 C. \(2(Y + 1) \)
 D. \(2Y + 1 \)

3. Mrs. Brown wants her class to make thank-you cards for the PTA. There are 29 students in her class and each student will make one card. Mrs. Brown wants the students to put velvet ribbon around the front of the cards which are rectangles 7 inches long and 3 inches wide. How many inches of velvet ribbon are needed for the entire class?
1. How many sides are congruent in an equilateral triangle?

2. Marty is Y years old. Which equation will represent her age 8 years from now?
 A. Y - 8
 B. Y + 8
 C. 8Y
 D. 8 - Y

3. The chart below lists the nine planets in our Solar System. It also gives the number of miles each planet is from the sun.

<table>
<thead>
<tr>
<th>Planets</th>
<th>Distance from the sun (in miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturn</td>
<td>887 million</td>
</tr>
<tr>
<td>Earth</td>
<td>93 million</td>
</tr>
<tr>
<td>Pluto</td>
<td>3700 million</td>
</tr>
<tr>
<td>Mercury</td>
<td>36 million</td>
</tr>
<tr>
<td>Neptune</td>
<td>2800 million</td>
</tr>
<tr>
<td>Mars</td>
<td>142 million</td>
</tr>
<tr>
<td>Uranus</td>
<td>1800 million</td>
</tr>
<tr>
<td>Jupiter</td>
<td>484 million</td>
</tr>
<tr>
<td>Venus</td>
<td>67 million</td>
</tr>
</tbody>
</table>

Base on the above information, what is the approximate range of the planets’ distance from the sun?
 A. 3700 million
 B. 1100 million
 C. 370 million
 D. 110 million
1. The Elektro W50 windmill generates 50 watts of energy. The Dunlite windmill generates 40 times as much energy. How many watts of energy does the Dunlite windmill generate?

2. Which of the figures below has only two lines of symmetry? (graphic for answers)

 - rectangle
 - triangle
 - circle
 - square

3. To measure the length of a football field you would use:
 A. centimeters
 B. feet
 C. yards
 D. liters
1. Dan has 18 pencils. He wants to keep 2 for himself and divide the rest among his 4 friends equally. Write an equation to show this.

2. Which set of fractions is ordered from least to greatest?
 A. $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}$
 B. $\frac{1}{6}, \frac{1}{4}, \frac{1}{2}$
 C. $\frac{1}{6}, \frac{1}{2}, \frac{1}{4}$
 D. $\frac{1}{4}, \frac{1}{6}, \frac{1}{2}$
1. The circle graph below shows the different types of pets Mr. Stars’ fourth graders have. If Mr. Stars’ fifth graders have a total of 40 pets, how many cats do they have?

2. The amount of water in the pool can be measured using:
 A. cups
 B. pints
 C. gallons
 D. feet

What is the next number in this pattern?

7, 14, 21, 28, 35, _____

A. 36
B. 42
C. 47
D. 49
1. There were 31 baseball cards that five boys divided evenly among themselves.
 A. How many cards did each boy get?
 B. How many were left?

2. A baby’s weight can be measured in:
 A. centimeters
 B. meters
 C. pounds

3. Which of these figures has ONLY one line of symmetry?

 A. ![Figure A]
 B. ![Figure B]
 C. ![Figure C]
1. The diameter of a circle is:
 A. Larger than the radius.
 B. Smaller than the radius.
 C. Smaller than any chord.
 D. Larger than the circumference.

2. Arnie walked R miles. Sammy walked three miles farther. What numeric expression represents the distance Sammy walked?
 A. 3R
 B. R - 3
 C. $3 \cdot R$
 D. $R + 3$

3. The arm of an average five-foot tall woman is 50 centimeters long. What is the length, in millimeters, of this arm?
1. What is 200,001 more than 464,300?

Explain how you could solve this using mental math.

2. Which is the best unit of measure for the distance you would travel to another state?
 A. centimeter
 B. decimeter
 C. liters
 D. kilometer
1. MuLan is N years old. Patsy is 4 years younger. How old is Patsy?
 A. N - 4
 B. N + 4
 C. 4 - N
 D. 4N

2. On the grid below draw a quadrilateral with 4 right angles, 4 equal sides, and make opposite sides parallel.
 (graphic)

3. Suppose you spun a paper clip on the spinner 64 times. How many times would you expect it to land on the number 4?
 A. 32
 B. 16
 C. 6
 D. 4
1. How many 10’s are in 300?

2. A bathroom floor is being covered with new floor tiles.
 • Each new tile has an area of 1 square foot.
 • Altogether, 70 new tiles will be used
 • The floor is shaped like a rectangle
 • To find the area of a rectangle, use the formula
 \[\text{Area} = \text{length} \times \text{width} \]

 The width of the floor is 7 feet. What is the length of the floor in feet?

3. A pattern of blocks is shown below.
 (graphic)

 How many blocks will be used to make a tower that is five blocks high?
1. What is 1,000 less than 34,763?
 A. 35,763
 B. 34,663
 C. 33,763
 D. 23,763

2. Matthew has some baseball cards. Patrick has half as many cards as Matthew. If Patrick has 10 cards, how many cards does Matthew have?

3. Mrs. Garcia distributed a marble collection to each group in her class. Each group had to sort its collection according to the color. Fern’s group sorted its marbles as follows: 3 red, 1 blue, 6 yellow, and 2 white. If all the marbles were then placed in a bag, which marble would she be most likely to pick from the bag?
 A. Red
 B. Blue
 C. Yellow
 D. White
1. Shawn is three times as old as Sarah. The sum of their ages times 3 equals 48. What is Shawn’s age?

2. While cooking, Roberta used these amounts of orange juice. (graphic)

How much orange juice did she use altogether?
1. Which number is 20,000 more than 427,365?
 A. 627,365
 B. 649,365
 C. 629,365
 D. 647,365

2. In September and April, fourth grade students were timed running a relay race. Students are expected to run the relay in less than 10 minutes. The chart below displays the times of four students in both September and April.

<table>
<thead>
<tr>
<th>Student</th>
<th>September Time</th>
<th>April Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>7 minutes, 46 seconds</td>
<td>7 minutes, 52 seconds</td>
</tr>
<tr>
<td>Maria</td>
<td>12 minutes, 48 seconds</td>
<td>12 minutes, 18 seconds</td>
</tr>
<tr>
<td>Kiara</td>
<td>10 minutes, 30 seconds</td>
<td>10 minutes, 5 seconds</td>
</tr>
<tr>
<td>Bill</td>
<td>9 minutes, 35 seconds</td>
<td>9 minutes, 27 seconds</td>
</tr>
</tbody>
</table>

 According to the chart, which student reduced their running time the greatest amount?
 A. Mark C. Kiara
 B. Maria D. Bill

3. Use the circle graph above. What decimal part of the garbage is paper, yard waste and glass?
 A. .51
 B. .66
 C. .61
 D. .71
1. I ate 1/3 of my pizza. Sue ate 1/2 of the pizza. Jen ate 1/4 of the pizza. Draw the amounts that each person ate.

- me
- Sue
- Jen

2. The area of a rectangle is 400 square feet. The length is 4 times greater than the width. What are the length and width of the rectangle?

 \[(\text{Area} = \text{length} \times \text{width})\]
 A. Length, 10 feet, and width 40 feet
 B. Length, 15 feet, and width 20 feet
 C. Length, 20 feet, and width 15 feet
 D. Length, 30 feet, and width 10 feet

3. How many vertices does a cube have?
 A. 6
 B. 12
 C. 8
 D. 16
1. Elias wants to put a frame around his picture. His picture is 4 feet by 6 feet. He needs to know how much frame to buy. What is the perimeter of his picture?

 4 feet

 6 feet

2. In the circle below, which of the following is an example of a diameter?

 A. KL
 B. NP
 C. XM
 D. XL

Muriel weighs three times as much as her dog Spike. If Spike weighs \(W \) pounds, what does Muriel weigh?

A. \(2W \)
B. \(3W \)
C. \(3 + W \)
D. \(W \div 3 \)
1. Write 25 in Roman numerals.

2. How many rectangles are in this design?

 A. 4
 B. 5
 C. 9
 D. 16
1. Which figure below has NO lines of symmetry? (graphic for answers)
 A. C.
 B. D.

2. Damien picked 31 strawberries. If Seth picked 2 less than twice that number, how many strawberries did Damian pick?

3. If the pattern in the table continued, what would the output be on day 7?

<table>
<thead>
<tr>
<th>Day</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 A. 10
 B. 14
 C. 16
 D. 17
1. The grocer has six 1-pound baskets of peaches. Each basket has 12 peaches. How many peaches is that in all?
 A. 12
 B. 60
 C. 72
 D. 76

2. Antonio wants to drink 2L of water a day. He has already had three 200-mL glasses. How many more glasses of water should he drink? (1 liter = 1000 milliliters)
 A. 1 glass
 B. 2 glasses
 C. 4 glasses
 D. 7 glasses

3. Steven picked nine cards from a deck. Here are his cards on all the picks:
 7, 6, 4, 5, 8, 6, 5, 7 and 5

 What is the median of his scores?
1. There are CC students on the field trip. How many students is this in Roman numerals?

2. There are 20 pieces of fruit in the bowl. 4/5 of the fruit in the bowl are apples. The rest are bananas. How many are bananas?

3. The hamsters are in the class cage. It is 2.5 feet wide and 6.5 feet long. What is the perimeter of the cage?

 2.5 feet

 6.5 feet
1. If it is sunny 1/3 of the month, how many sunny days can be expected in September? (1 month = 30 days)

 Explain.

2. Roberta is putting blocks into a box. How many blocks will the box hold? (graphic)

3. Which number sentence would show how to solve this problem?
 A. 3 x 3 = 9
 B. 12 ÷ 3 = 4
 C. 5 x 3 = 15
 D. 3 x 4 = 12
1. Which is 2 hundred thousand more than 6 hundred seventy-four thousand, two hundred forty-nine?
 A. 874,294
 B. 874,249
 C. 674,249
 D. 647,249

2. Kendra ate 1/4 of the candy bar. Malcom ate twice as much as Kendra. How much of the candy bar did Malcom eat?

3. What number would you use to complete the chart?

<table>
<thead>
<tr>
<th>Input</th>
<th>2</th>
<th>3</th>
<th>?</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>28</td>
</tr>
</tbody>
</table>

A. 6
B. 8
C. 4
D. 1
1. In the space below, draw 2 different types of quadrilaterals. (graphic)

Tell why the figures you drew are quadrilaterals.
1. Which shape is located on point (2, 5) on the grid map?

![Grid Map with shapes]

2. What is the next number in this pattern?

1, 1, 2, 3, 5, 8, ______

A. 10
B. 12
C. 13
D. 14

3. Mr. Clark’s class is planting a garden. The garden is planted in the shape of a rectangle. The area of the garden is 1,800 square feet. The width of the garden is 30 feet. What would be the length in feet of one side of the garden?

30 feet
1. Show 50 in Roman numerals.

2. Which pair of coordinates should Jose plot to make a trapezoid?

A. (0,0) and (6,0)
B. (4,2) and (4,5)
C. (0,0) and (3,0)
D. (1,2) and (4,2)
1. How many faces does a cube have?

 A. 4
 B. 6
 C. 7
 D. 8

2. At 4:00 the pitcher had 8 pints of juice. ABOUT how many pints were in the pitcher at 5:00?

3. Samantha wants to call her Aunt Mae in California to wish her a happy birthday, but there is a three-hour time difference. Samantha made her call at 1:16 p.m.

 If it is earlier in California, what time was it when Aunt Mae answered the telephone?
 A. 11:16 a.m.
 B. 10:16 a.m.
 C. 4:16 p.m.
 D. 5:16 p.m.
1. Of the 100 students in third grade, 49 have in-line skates. What fraction represents those students?
 A. $\frac{49}{100}$
 B. $\frac{51}{100}$
 C. $\frac{100}{49}$
 D. $\frac{49}{51}$

2. What is the next letter in this series?
 A, Z, B, Y, C, X, D, _____
 A. E
 B. W
 C. V
 D. T

3. If the two pans are in perfect balance, how much does one cylinder weigh if one circle = 2 pounds?
1. For lunch, Jackie eats a sandwich 2 times a week and soup 5 times a week. What is the probability she will have soup tomorrow?
A. \(\frac{2}{5} \)
B. \(\frac{5}{2} \)
C. \(\frac{2}{7} \)
D. \(\frac{5}{7} \)

2. If the radius of a circle is 5 cm, what is its diameter?
A. 5 cm
B. 10 cm
C. 25 cm
D. 50 cm

3. This is an equilateral triangle. Draw as many lines of symmetry as you can.
1. How do you determine this number?
 \[C + L + V + _
 \]
 Use numbers to help you with the addition.

2. What angle is formed by the hands on a clock when it is 2:15?

 A. Acute
 B. Obtuse
 C. Right
 D. Straight
1. Which page is closer to the front of the book?
 A. I
 B. L
 C. C
 D. X

2. Complete the table below.

<table>
<thead>
<tr>
<th>In</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out</td>
<td>(\frac{1}{2})</td>
<td>1</td>
<td>(\frac{1}{2})</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. If the median of the number of students in a class is 32, what conclusion can you make?
 A. All of the classes have 32 students.
 B. No class has more than 32 students.
 C. At least one class has 32 students.
 D. No class has 45 students.
Grade 4 Mathematics Review Day 138

1. Find the range, mean, and median for the set of data below:

37, 42, 59, 88, 56, 32, 88, 54

1. range _______

2. mean _______

3. median _______
1. What does the 7 represent in 472,895?

2. Which of these shows an example of a slide?

A.

B.

C.

D.

3. What metric unit would be the most reasonable to use for measuring the width of your bedroom?
 A. millimeter
 B. centimeter
 C. meter
 D. kilometer
1. There are 12 friends at the pizza party. Each friend has 3 pieces of pizza. Each pizza was cut into 9 pieces. How many pizzas were needed? Explain with words and pictures.

2. The figure below has been moved from Location A to Location B.

 A. B.

 Which word best describes the movement?
 A. flip
 B. slide
 C. turn
 D. rotation
1. A hockey rink has a length of 200 feet. Its width is half its length. What is the perimeter of the hockey rink?

2. Look at the shapes below. Which shape would look the same after a reflection over the line?

 A. B. C. D.

3. What is the next number in this sequence of numbers?
 104, 103, 101, 98, 94, _____
 A. 89
 B. 90
 C. 91
 D. 95

1. Barbara and Greg were keeping track of high and low temperatures in four Florida cities. One day’s findings are recorded, in degrees Fahrenheit, in the table below.

<table>
<thead>
<tr>
<th>Cities</th>
<th>Lows</th>
<th>Highs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ft. Lauderdale</td>
<td>62°</td>
<td>88°</td>
</tr>
<tr>
<td>St. Augustine</td>
<td>55°</td>
<td>64°</td>
</tr>
<tr>
<td>Tallahassee</td>
<td>45°</td>
<td>68°</td>
</tr>
<tr>
<td>Orlando</td>
<td>59°</td>
<td>69°</td>
</tr>
</tbody>
</table>

Which city had the greatest difference between its high and low temperatures?
A. Ft. Lauderdale
B. St. Augustine
C. Tallahassee
D. Orlando

2. What is the location of point M on the grid map below?

3. What is the next number in this series?
 1, 2, 4, 8, 16, ______
 A. 17
 B. 18
 C. 32
 D. 24
Grade 4 Mathematics Review Day 143

1. \(\frac{6}{8} \) of the cake was eaten. How much is left?

2. Which of the following best describes a cereal box?
 - A. pyramid
 - B. rectangle
 - C. cube
 - D. rectangular prism

3. Which of the following best describes a basketball?
 - A. sphere
 - B. cylinder
 - C. circle
 - D. cone
1. If all of the pizzas are combined, are there more than 2 full pizzas?

Explain.

2. Marta is making drapes. Each drape requires 4 yards of material. If she has 96 feet of material, how many drapes can she make?
 (3 feet = 1 yard)

 A. 7
 B. 8
 C. 16
 D. 46
1. Which page is closer to the end of a 110 page book?
 A. I
 B. L
 C. C
 D. X

2. An average person takes about 14 breaths per minute. How many breaths does the average person take in 5 minutes?

<table>
<thead>
<tr>
<th>minutes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>breaths</td>
<td>14</td>
<td>28</td>
<td>42</td>
<td>56</td>
<td>?</td>
</tr>
</tbody>
</table>

3. When Viet was born, his sister Nguyen was 8 years old. Lee, his brother, was two years old. Let \(N \) represent the number for Nguyen’s age. Which of these expressions could correctly be used to find Viet’s age?
 A. \(2 + N \)
 B. \(N + 8 \)
 C. \(N - 2 \)
 D. \(N - 8 \)
1. Tanya’s mother is 5 times her age. If her mother is 55 years old, which equation will give you Tanya’s age (N)?
 A. $N = 55 - 5$
 B. $N = 55 - 50$
 C. $N = 55 \times 5$
 D. $N = 55 \div 5$

2. Which of the following best describes a soup can?
 A. rectangular prism
 B. cylinder
 C. cone
 D. sphere

3. Pierre had 32m of fencing. He wanted to use all of it to put a fence around his square garden. How long is the length and width of Pierre’s garden?
1. What number is 2,000 less than 874,321
 A. 872,321
 B. 874,521
 C. 876,521
 D. 878,521

2. Twelve students in Diego’s class received an 80 on the Science test. Eight students received a 90 and 1 received a 100. What is the mode of the class scores?

3. Which diagram is an example of a cone?
1. Beth selected one marble from a bag with 2 red, 5 blue, and 8 green marbles. What is the probability she selected a green marble?

2. To make the THIRD scale balance, what could you add to the left side of the scale?

A. △ △ △
B. △ △ △ △
C. □
D. ○

3. Which figure below is a reflection of ?

A. ——
B. ——
C. ——
D. ↑
1. What number is 2,000 more than 56,830?

2. Choose a reasonable metric length to measure the length of a pair of scissors.
 A. decameters
 B. centimeters
 C. meters
 D. kilometers

3. Sarah and Karen were eating potato chips. Karen ate half as many chips as Sarah. Let N represent the number of chips that Sarah ate. Which expression could be used to find the number of chips that Karen ate?
 A. $N + 2$
 B. $N \div 2$
 C. $N - 2$
 D. $2N$
Mr. Alvarez's class voted on their favorite ice cream flavors. The votes are tallied in the chart.

<table>
<thead>
<tr>
<th>Flavors</th>
<th>Number of Votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chocolate</td>
<td></td>
</tr>
<tr>
<td>Vanilla</td>
<td></td>
</tr>
<tr>
<td>Strawberry</td>
<td></td>
</tr>
<tr>
<td>Chocolate Chip</td>
<td></td>
</tr>
<tr>
<td>Coffee</td>
<td></td>
</tr>
</tbody>
</table>

On the grid below, make a bar graph that displays the data. Be sure to:
- Title the graph
- Label the axes
- Use appropriate and consistent intervals/scales
- Accurately graph the data
1. The temperature is 32 degrees Fahrenheit. What would be the appropriate clothing to wear to school?
 A. Shorts and a T-shirt
 B. A light jacket
 C. A winter coat and mittens
 D. A sweater

2. How many 4-digit numbers can be made using the digits 1, 2, 3, 4?
 A. 12
 B. 16
 C. 20
 D. 24

3. Which drawing shows the rotated 90° clockwise?
 A.
 B.
 C.
 D.

1. The skateboard was on sale for $36.45. Which words represent that price?
 A. Thirty-six forty-five dollars
 B. Thirty-six dollars and forty-five cents
 C. Thirty-six dollars fourteen cents
 D. Thirty dollars and forty-five cents

2. What is the location of the church on the grid map below?

3. Sandy bikes every day after she finishes her homework. She made the following chart to show how many miles she biked last week:

<table>
<thead>
<tr>
<th>Miles Biked Per Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
</tr>
<tr>
<td>Tuesday</td>
</tr>
<tr>
<td>Wednesday</td>
</tr>
<tr>
<td>Thursday</td>
</tr>
<tr>
<td>Friday</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Which expression shows how far she biked Monday through Thursday?
 A. \(N - 2 \)
 B. \(4 + 8 + 11 \)
 C. \(N + 4 + 11 + 8 + 7 \)
 D. \(N + 6 \)
1. Circle the figure that has a line of symmetry.

Figure A

Figure B

Explain why the figure you circled has a line of symmetry.

2. A recipe requires \(\frac{1}{3} \) of a block of cheese. Which picture show how much cheese the recipe requires?

A.

B.

C.

D.
1. How many combinations of double dip ice cream cones can be made with the flavors vanilla, chocolate and strawberry?
 A. 4
 B. 5
 C. 6
 D. 9

2. John placed 15 paper clips on one side of a balance scale. Then he placed 3 erasers on the other side of the scale to make it balance. How many paper clips does he need if he placed 5 erasers on one side of the scale to make it balance?
 A. 5
 B. 7
 C. 20
 D. 25

3. The temperature in Miami was 72° at 8:00 a.m. The temperature rose 3 degrees every hour. What was the temperature at 2:00 p.m?
1. Lee has 100 autographs of sports stars. 73 are football players’ signatures. How many are NOT football players?

2. The pool is 100 meter x 35 meters. What is the perimeter?

3. There are 9 flatbed trucks of logs rolling out of the shipping yard. Each flatbed has 84 logs. How many logs are there in all?
1. Find $\frac{2}{3}$ of 15.

A. 2
B. 3
C. 5
D. 10

2. Look at the following chart.

<table>
<thead>
<tr>
<th>Students</th>
<th>Books Read</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scott</td>
<td>7</td>
</tr>
<tr>
<td>Mike</td>
<td>13</td>
</tr>
<tr>
<td>Gary</td>
<td>19</td>
</tr>
<tr>
<td>Barb</td>
<td>10</td>
</tr>
<tr>
<td>Jan</td>
<td>6</td>
</tr>
</tbody>
</table>

What is the mean number of books read?

3. What three dimensional figure has no faces?
 A. cube
 B. cylinder
 C. sphere
 D. cone
1. Solve the riddle choosing from the numbers in the table and using the clues.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

It is not half of 4×5
It is not < 5
It does not equal 3×4
It does not equal 2 tens
It is not the missing number, N, in $5 \times N = 25$

The number is \[\underline{\text{__________}} \].

2. Which figure can be folded to form a cube?

A.
B.
C.
D.
1. Jars A and B have marbles inside. The jars are identical in size: If jar A has 125 marbles, ABOUT how many marbles are in jar B?

Explain.

2. If a student spun a paper clip on the spinner below, which statement would be true?

A. It would most likely land on an even number.
B. It would most likely land on an odd number.
C. It has an equal chance of landing on an even and odd number.
D. It is twice as likely to land on an even number.

3. Plot the following coordinates and connect the points in order: (3,3) (2,5) (5,5) and (6,3). Then connect the last point to the first point.

What shape is created?
A. trapezoid B. square
C. triangle D. parallelogram
1. The vet has 24 pets in the kennel. \(\frac{1}{6} \) are rabbits. How many are rabbits?
 A. 4
 B. 6
 C. 12
 D. 24

2. There is a new batch of pretzels coming out of the oven every 5 minutes. If the first batch comes out at 11:00 a.m., when will the next 6 batches be done?

3. The students in Ms. Solomon’s classroom voted for their favorite colors. The results are shown in the table below

 The Favorite Colors of the Students in Ms. Solomon’s Class

<table>
<thead>
<tr>
<th>Colors</th>
<th>Number of Students Voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red</td>
<td>6</td>
</tr>
<tr>
<td>Green</td>
<td>5</td>
</tr>
<tr>
<td>Purple</td>
<td>9</td>
</tr>
<tr>
<td>Blue</td>
<td>6</td>
</tr>
<tr>
<td>Yellow</td>
<td>6</td>
</tr>
</tbody>
</table>

 What is the range?
 A. 9
 B. 6
 C. 5
 D. 4
1. The Panther’s attendance at a week night game was 15,632. A weekend game’s attendance was 32,763. What is the difference?
A. Seventeen thousand one hundred thirteen
B. Seventeen thousand one hundred thirty one
C. Seven thousand one hundred thirty-one
D. Seventeen thousand one hundred thirty

2. Jill plotted points D, E below:

Which of these pairs of coordinates should Jill plot to make a trapezoid?
A. (3,6) and (6,3)
B. (4,3) and (7,3)
C. (9,4) and (2,4)
D. (4,5) and (4,2)

3. Patricia read 37 books for Reading Across Broward. If Patricia read one more book, the number of books she read this year would have been double the number of books she read last year. How many books did Donna read last year?
1. The local movie theater recorded the number of tickets sold over a five-day period. The results are displayed by the bar graph.

![Movie Ticket Sales Graph]

The tickets sold on Saturday and Sunday were also recorded. Use the bar graph to predict the number of tickets sold on those days. Explain how you obtained your answer.

2. Which measurement best describes the weight of a pencil?
 A. 5 kilograms
 B. 5 grams
 C. 5 meters
 D. 5 liters
1. The floor plan of a kitchen is shown below. It shows space for a stove and space for kitchen cabinets.

\[
\begin{array}{c}
\text{Stove} \\
\hline
\text{CABINETS}
\end{array}
\]

\[
\begin{array}{c}
\text{= 1 square unit} \\
\text{Area of a rectangle = length \times width}
\end{array}
\]

Draw another space on the grid. The space you draw should have an area greater than the stove but less than the cabinets. Label the space you draw a refrigerator.
1. Lamar filled \(\frac{1}{2} \) of his fish tank with water. Which fish tank has a shaded area that represents \(\frac{1}{2} \)?

A.
B.
C.
D.

2. Which is shorter, a bookcase 1 m 40 cm long or a bookcase 150 cm long?

(1m = 100 cm)
A. They are the same length
B. The bookcase that is 1 m 40 cm
C. The bookcase that is 150 cm
D. You can’t tell

3. The grades of Lisa, Philip, Carlos and Joseph are recorded on the bar graph below. Use the graph to answer the following question, and round your answers to the nearest whole number. What was the mean score of the students taking the test?
1. The diameter of a circle is:
 A. Larger than the radius
 B. Larger than the circumference
 C. Smaller than a chord
 D. Smaller than the radius

2. Emery has $38 saved for a new video game. The game costs $57. Which number sentence would you use to find out how much more money he needs?
 A. $38 + $57
 B. $57 ÷ $38
 C. $38 x $57
 D. $57 – $38

3. Order from least to greatest.

\[
\frac{7}{8}, \quad \frac{7}{5}, \quad \frac{7}{6}, \quad \frac{7}{3}
\]
1. What number completes the chart?

<table>
<thead>
<tr>
<th></th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>？</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Explain how you found your answer.

2. While cooking, Roberta used these amounts of orange juice.

How much orange juice did she use altogether?

A. $1 \frac{1}{2}$ cup
B. $\frac{3}{4}$ cup
C. 2 cups
D. 3 cups
1. Measure this heart from side to side and top to bottom to the nearest half inch.

Side to side_______________

Top to bottom_____________

2. Which rule describes this table?

<table>
<thead>
<tr>
<th>N</th>
<th>7</th>
<th>12</th>
<th>4</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

A. N ÷ 2
B. N + 4
C. N – 4
D. 2N

3. Phillipe is using this spinner.

What is the probability of spinning a number less than 5?

A. 1:8
B. 5:3
C. 5:8
D. 4:8
1. If you connect the following points what figure do you get?

\[(2,3) \quad (2,5) \quad (4,5) \quad (4,3)\]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. The number of fish in the tank added to 8 more fish, gives a total of 24 fish. What equation says the same thing?

A. \[8N = 24\]
B. \[N + 8 = 24\]
C. \[24 \div 8 = N\]
D. \[24 + 8 = N\]

3. Danny uses \[\frac{1}{10}\] of his room for toys. Which of these represents the portion of the room used for toys?

A. 0.01
B. 0.10
C. 1.00
1. What is 500 more than 2,400?

2. $\frac{1}{4}$ of the 20 children like chocolate. How many children like chocolate?

3. The chart below tells about how much flour the baker used each day of the week:

<table>
<thead>
<tr>
<th>DAY</th>
<th>POUNDS OF CORN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>49</td>
</tr>
<tr>
<td>Tuesday</td>
<td>51</td>
</tr>
<tr>
<td>Wednesday</td>
<td>78</td>
</tr>
<tr>
<td>Thursday</td>
<td>69</td>
</tr>
<tr>
<td>Friday</td>
<td>81</td>
</tr>
</tbody>
</table>

ABOUT how many pounds did he use in the week?
1. Joshua said, “It looks to me to be about 20 feet high.” What could he be talking about?
 A. A basketball hoop
 B. A height of a school student
 C. The ceiling
 D. A building

2. Which of the following shows a clockwise rotation of the trapezoid?

 A.
 B.
 C.
 D.

3. Selena picked 24 lemons from her father’s fruit tree. Yesterday she picked two times that many plus, 2 more. How many lemons did Selena pick yesterday?
1. During winter break, Alex is planning to sell orange juice each day for 10 days. The supplies he needs to buy each day cost $4.97.

 Alex wants to estimate if $50.00 is enough money to buy all of his supplies. Explain how Alex could estimate if he has enough money.

2. Carla has 14 red clips, 6 blue clips, 18 green clips, and 4 black clips in a bag. Each clip is the same size. If she takes one clip out of the bag without looking, which color will most likely be chosen?
 A. red
 B. blue
 C. green
 D. black
1. If you flip the following figure over the line of symmetry, the result would be:

A. B. C.

D

2. Steven designed this pattern:

If he has 5 squares. how many pieces, in all, will his pattern have?
A. 15
B. 20
C. 25
D. 30

3. Students have been practicing their multiplication facts on the computer. The chart below represents the problems per minute that five students solved.

<table>
<thead>
<tr>
<th>Student Name</th>
<th>Problems per minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthur</td>
<td>19</td>
</tr>
<tr>
<td>Don</td>
<td>17</td>
</tr>
<tr>
<td>Fran</td>
<td>15</td>
</tr>
<tr>
<td>James</td>
<td>16</td>
</tr>
<tr>
<td>Misha</td>
<td>13</td>
</tr>
</tbody>
</table>

What is the mean speed of solving problems for the students listed above?
1. Valeria bought a doll for $12.87. How much change will she get from a $20.00 bill?
 A. $2.26
 B. $7.13
 C. $8.13
 D. $8.87

2. Tomas had 2 eggs. He went shopping and bought 6 dozen eggs. Which expression correctly represents the total number of eggs Tom had after he went shopping?
 A. (2 + 6) x 12
 B. 2 + 6 x 12
 C. 2 + (6 x 12)
 D. 2 x 6 +12

3. A fourth grade class read the Newberry Award winning book, Island of the Blue Dolphins. The book has 150 pages. The teacher assigned 10 pages the first week. The second week 20 pages were assigned. The third week’s assignment was 40 pages.

<table>
<thead>
<tr>
<th>Week</th>
<th>Assigned</th>
<th>Total Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If the pattern continues, how many pages were assigned the fourth week?
1. A store sells brown, tan, and black stuffed teddy bears. They have blue or green eyes. How many different types of bears are there available?
 A. 4
 B. 5
 C. 6
 D. 7

2. What is the location of the star?

 A. (7,4)
 B. (4,7)
 C. (3,7)
 D. (3,6)

2. The students in the fourth grade recorded their favorite cookies. The results are shown below:

<table>
<thead>
<tr>
<th>Number of Students</th>
<th>Cookies</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>Oatmeal</td>
</tr>
<tr>
<td>29</td>
<td>Chocolate Chip</td>
</tr>
<tr>
<td>21</td>
<td>Butter</td>
</tr>
<tr>
<td>18</td>
<td>Sandwich</td>
</tr>
<tr>
<td>12</td>
<td>Ginger Snaps</td>
</tr>
</tbody>
</table>

Which two types of cookies added together is greater than the favorite?
1. Marco is 8 years older than his brother Roberto. If N represents Marco’s age, which expression below represents Roberto’s age?

A. $N - 8$
B. $8 - N$
C. $N + 8$
D. $8 + N$

2. A group of students was asked to name their favorite sport. Their answers to the questions are shown in this chart.

<table>
<thead>
<tr>
<th>Favorite Sports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Football</td>
</tr>
<tr>
<td>Basketball</td>
</tr>
<tr>
<td>Tennis</td>
</tr>
<tr>
<td>Baseball</td>
</tr>
<tr>
<td>Golf</td>
</tr>
<tr>
<td>Swimming</td>
</tr>
</tbody>
</table>

What is the range of the data?

A. 12
B. 10
C. 7
D. 5

3. How many ways can Jeff choose one drink and one main dish?

Show each way.
1. There are 5 people coming to dinner. How would you divide the food evenly?

<table>
<thead>
<tr>
<th>Total Food</th>
<th>Each Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 pickles</td>
<td>___ pickles</td>
</tr>
<tr>
<td>5 sandwiches</td>
<td>___ sandwiches</td>
</tr>
<tr>
<td>25 strawberries</td>
<td>___ strawberries</td>
</tr>
<tr>
<td>35 spoons of Jello</td>
<td>___ spoons of Jello</td>
</tr>
<tr>
<td>1 cake</td>
<td>___ cake</td>
</tr>
</tbody>
</table>

2. What time is the equivalent to 137 minutes?
 A. 1 hour 37 minutes
 B. 2 hours 17 minutes
 C. 2 hours 37 minutes
 D. 3 hours 37 minutes

3. How many lines of symmetry does this figure have?
 A. 0
 B. 1
 C. 2
 D. 4
1. Regina, Tomas, Lenore, and Caitlin each want an equal portion of the pizza. Which picture represents the pizza already divided so that each can have an equal number of pieces?

 A.
 B.
 C.
 D.

2. How many lines of symmetry does a rectangle that is not a square have?
 A. 4
 B. 3
 C. 2
 D. 1

3. Jake and Brian are playing a spinning game. The first player to land on his or her color 5 times wins. Jake is the shaded section and Brian is the unshaded section.

 Who has a better chance of winning this game?
1. What is the eighth month of the year?
 A. June
 B. July
 C. August
 D. September

2. Ophelia had \(\frac{6}{8} \) of a yard of fabric. Her sister used \(\frac{1}{4} \) of a yard. What equation would you use to find the amount of ribbon left?
 A. \(\frac{6}{8} - \frac{1}{4} = N \)
 B. \(\frac{6}{8} - N = \frac{1}{4} \)
 C. \(\frac{1}{4} - \frac{6}{8} = N \)
 D. \(\frac{1}{4} - \frac{6}{8} = N \)

Population of Florida

Using the data in the graph, ESTIMATE the population in 1955.
1. Are there more or less than $\frac{33}{4}$ pizzas shown? Explain.

2. Each day for three days, a manager recorded the number of donuts sold by the new salesperson.

<table>
<thead>
<tr>
<th>Donuts Sold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
</tr>
<tr>
<td>Tuesday</td>
</tr>
<tr>
<td>Wednesday</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Each stands for 10 donuts</td>
</tr>
</tbody>
</table>

Which question below can be answered using the data from the pictograph?

A. What is the average number of flowers the other sales people sold on Monday?
B. How does the number of flowers sold by the new salesperson on Wednesday compare to the number of flowers he sold on Monday and Tuesday?
C. How long was the length of the new salesperson’s lunch break?
D. How satisfied is the manager with the new salesperson’s work?
1. Robin’s spelling quiz scores are:

 98, 99, 98, 99, 100, 100

 What is her mean score?
 A. 98
 B. 99
 C. 100
 D. 98.5

2. The baker has 9 racks in the oven. Each rack has 64 cookies. How many cookies in all? Show the equation.

3. A box contains 10 red blocks, 21 purple blocks, 12 green blocks, and 19 orange blocks. If a block is chosen without looking, which is the most likely result?

 A. red
 B. purple
 C. green
 D. orange
1. Suppose you have twice as many dimes as pennies. The coins total $0.63. How many of each coin do you have?
 A. 5 dimes, 13 pennies
 B. 4 dimes, 2 pennies
 C. 6 dimes, 3 pennies
 D. 3 dimes, 6 pennies

2. Which is the best ESTIMATE of the length of this page from top to bottom?
 A. 30 km
 B. 30 m
 C. 30 cm
 D. 30 mm

3. Scientists studied the diet of a group of people. Here is a list of the food groups and the decimal part of the total diet made up of each food group.

 Dairy Products 0.09 Grains 0.19
 Fruits 0.24 Fish 0.48

 Which 3 food groups need to change in order for the group of people to have approximately 4 equal groups?
Daily Questions

Answer Key

Grade 4
Grade 4 Answer Key

Day 1
Answers: 1. A (E.1.2.2) 2. C (A.1.2.2) 3. 27 (D.2.2.1)

Day 2
Answers: 1. $20.65 (A.1.2.4) 2. 36 (B.2.2.1) 3. $2.00 (D.2.2.2)

Day 3
Answers: 1. Students’ answers will vary. Explanations should include rounding the cost to $10.00 and using mental math to multiply 10x14=140. The supplies will cost approximately $140.00 so Sam does not have enough money. (A.4.2.1) 2. A (B.2.2.2)

Day 4
Answers: 1. C (C.3.2.1) 2. B (C.2.2.1) 3. 500m (B.2.2.1)

Day 5
Answers: 1. Students’ answers will vary. They should have drawn a shape that has a perimeter greater than 14 but less than 22. They should have given the perimeter of their shape on the lines. (C.3.2.1) 2. 20 (B.1.2.1) 3. C (B.1.2.1)

Day 6
Answers: 1. B (D.2.2.1.) 2. C (B.3.2.1.) 3. A (E.3.2.1.)
Day 7
Answers: 1. 8 (D.1.2.2.) 2. 225 (A.2.2.1) 3. B (A.3.2.1.)

Day 8
Answers: 1. Student answers will vary. Example: The output number is half of the input number or divide the input number by 2. (D.1.2.2)
2. D (C.3.2.2)

Day 9
Answers: 1. A (E.2.2.2) 2. B (D.1.2.1) 3. 4 (A.1.2.4)

Day 10
Answers: Student answers will vary. The space they have drawn should have an area larger than 20 square units but smaller than 48 square units. Their drawing should have the label “Dresser.” (C.3.2.1)

Day 11
Answers: 1. B (D.2.2.1) 2. 102 (A.3.2.3) 3. D (B.4.2.1)

Day 12
Answers: 1. 200 students. Sample explanation: I rounded 88 up to 100 and 109 down to 100 then added the two numbers together to get an estimate of 200 students. (or 88 to 90 and 109 to 110, 90 + 110 = 200) (A.4.2.1)
2. D (C.2.2.2)
Day 13
Answers: 1. 90 (A.2.2.1) 2. 6 (B.1.2.2) 3. $3.20 (D.2.2.2)

Day 14
Answers: 1. B (A.5.2.1) 2. B (C.2.2.2) 3. 2 (D.2.2.2)

Day 15
Answers: 1. A, because the space for A covers a greater space than the space for B (E.2.2.1) 2. A (B.1.2.2)

Day 16
Answers: 1. 15 (D.1.2.1) 2. C (A.3.2.2) 3. C (A.1.2.2)

Day 17
Answers: 1. A (C.3.2.1) 2. 36 party favors (A.5.2.1) 3. B (A.3.2.1)

Day 18
Answers: 1. Triangles; they are congruent because they are the same size and the same shape. (C.1.2.1) 2. A (A.1.2.3)
Day 19
Answers: 1. A (A.1.2.3)
2. D (A.1.2.4)
3. D

Day 20
Answers: Accept all reasonable predictions. Possible answer: Since Josh saw a total of 115 manatees on 5 different days, he saw an average of 23 manatees each day. As a result, he might have seen a total of 23×2 or 46 manatees on Saturday and Sunday. (E.3.2.2)

Day 21
Answers: 1. 28 (A.3.2.2)
2. A (C.2.2.2)
3. C

Day 22
Answers: 1. 4; multiply the input by 4. (D.1.2.2)
2. D (E.3.2.1)

Day 23
Answers: 1. 9,000 (A.4.2.1)
2. B (A.3.2.2)
3. Graphic for answer (C.2.2.1)

Day 24
Answers: 1. C (A.2.2.1)
2. D (B.2.2.2)
3. C (E.1.2.2)
Day 25
Answers: 1. Figure A: Explanation: If Figure A was folded along the dotted line, the halves of the figure would match exactly (C.1.2.1)
2. B (B.2.2.1)

Day 26
Answers: 1. 4 (B.1.2.2) 2. A (A.3.2.2) 3. B (D.2.2.2)

Day 27
Answers: 1. 9 or 3 (A.3.2.1) 2. A (B.1.2..) 3. 14 (C.3.2.1)

Day 28
Answers: 1. 10 (D.1.2.1) 2. 16 (B.1.2.2) 3. 945 (A.3.2.3)

Day 29
Answers: 1. All of the days of the week have an equal chance of being pulled. (E.2.2.2) 2. D (A.1.2.4)

Day 30
Answers: Student answers will vary. Check student charts and graphs for completeness and accuracy. Statements should be similar to the following: There were 2 children in the 0-4 age bracket. Senior citizens had the fewest number of people. (E.1.2.1)
Day 31
Answers: 1. D (A.1.2.3) 2. 5 miles Explanation: answers will vary. Possible explanation: Let n = the hours he ran, 2n= hours he biked, 2n+n =3n and 3n =15. Solve for n. (B.1.2.2)

Day 32
Answers: 1. F (A.1.2.1) 2. 4000m (B.2.2.2) 3. B (C.2.2.2)

Day 33
Answers: 1. Answers will vary. Check student responses for completeness and accuracy. (E.1.2.1) 2. B (B.2.2.2)

Day 34
Answers: 1. D (A.3.2.3) 2. 2 pints (B.1.2.2) 3. x=3 (D.2.2.1)

Day 35
Answers: 1. Y=4 (D.2.2.1) 2. D (A.3.2.1) 3. A (B.2.2.1)
Day 36
Answers: 1. Students should have drawn three triangles in the given space. Explanation: A triangle is a polygon with three sides and three corners (vertices). (C.2.2.1) 2. C (E.1.2.2)

Day 37
Answers: 1. 3+N (B.1.2.2) 2. Multiply the input number by 3 (D.1.2.2) 3. C (A.3.2.2)

Day 38
Answers: 1. A (A.1.2.3) 2. $2.00 (B.4.2.1) 3. 7 (D.2.2.2)

Day 39
Answers: 1. D (A.3.2.3) 2. D (B.4.2.1) 3. A (E.1.2.2)

Day 40
Answers: 1. Student answers will vary. Check responses for completeness and accuracy. (E.1.2.1) 2. A (C.1.2.1)
<table>
<thead>
<tr>
<th>Day 41</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Answers:</td>
<td></td>
</tr>
<tr>
<td>1. Isosceles (C.1.2.1.)</td>
<td>2. 13 (D.2.2.1.)</td>
</tr>
<tr>
<td>3. 14 degrees (B.1.2.2.)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 42</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Answers:</td>
<td></td>
</tr>
<tr>
<td>1. D (B.2.2.1)</td>
<td>2. Student answers will vary.</td>
</tr>
<tr>
<td>They should have drawn a line on the figure that divides it in half.</td>
<td></td>
</tr>
<tr>
<td>Explanation: a line of symmetry divides a figure into two congruent halves that are mirror images of each other. (B.2.2.1)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 43</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Answers:</td>
<td></td>
</tr>
<tr>
<td>1. 6; choc-choc, choc-van, choc-straw, van-van, van-straw, straw-straw (E.3.2.2)</td>
<td>2. 7 (D.2.2.2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 44</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Answers:</td>
<td></td>
</tr>
<tr>
<td>1. 80 (E.1.2.2)</td>
<td>2. 12 books: explanation: The number of books decreases by 1 more than the previous row. (D.2.2.1)</td>
</tr>
</tbody>
</table>
Day 45
Answers: 1. 9 outfits: blue shirt/black pants, blue shirt/green pants, blue shirt/yellow pants, white shirt/black pants, white shirt/green pants, white shirt/yellow pants, red shirt/black pants, red shirt/green pants, red shirt/yellow pants (E.2.2.1)
2. B (C.3.2.2)

Day 46
Answers: 1. C (A.3.2.2) 2. C (B.1.2.2) 3. C (C.2.2.1)

Day 47
Answers: 1. B (C.3.2.2) 2. Each person receives 2 ears of corn, 1 potato, 3 ounces of beans, 1/2 pound of turkey, and 1/8 of a pie. (A.3.2.1)

Day 48
Answers: A, B, and C because you can draw a line that would divide the shape into 2 equal parts that are mirror images of each other. (C.2.2.1)

Day 49
Answers: 1. C (A.2.2.1) 2. C (B.3.2.1) 3. B (C.2.2.1)
Day 50
Answers: 1. No, she does not have enough money. Explanation: $6.35 \times 4 = 25.40$ which is more than 25.00. (A.1.2.4) 2. A. (C.2.2.1)

Day 51
Answers: 1. C (A.1.2.4) 2. B (A.1.2.3) 3. 187,912

Day 52
Answers: 1. 3 (A.1.2.1) 2. A (C.3.2.1) 3. D

Day 53
Answers: 1. (chart answers) 4, 6, 8, 10, 12, 14 (D.1.2.1) 2. 6 (D.1.2.1) 3. (chart completion 36, 45, 54) The rule is multiply by 9 (A. 3.2.1)
Day 54
Answers:

1. C (C.2.2.2)
(A.3.2.1)
2. C (E.2.2.2)
3. x and +

Day 55
Answers:

1. 80 (A.2.2.1)
(C.1.2.1)
2. 10 feet (B.1.2.2)
3. 25 blocks

Day 56
Answers:

1. 120 (A.4.2.1)
(B.3.2.1)
2. grams (B.2.2.2)
3. C

Day 57
Answers:

1. Yes the pan that is 1/4 full is equal to the pan that is 3/12 full. 1/4 and 3/12 are equivalent fractions. (A.1.2.4)
2. B (E.1.2.2)
3. 9 ways: juice-ice cream, juice-cake, juice-pie, water-ice cream, water-cake, water-pie, milk-ice cream, milk-cake, milk-pie (E.2.2.1)
Day 58
Answers: 1. 84 inches (C.3.2.1) 2. B (B.3.2.1) 15;30;22;24; 3. A (D.2.2.2)

Day 59
Answers: 1. 120 square feet (B.1.2.2) 2. D (C.2.2.2) 3. A (A.3.2.2)

Day 60
Answers: 1. C (A.3.2.2) 2. A = 88, B = 4, (E.1.2.2)

Day 61
Answers: 1. A (B.1.2.1) 2. 3,4,5 Explanation: Divide the input number by 9 (A.3.2.2)
Day 62

Answers:
1. 49, $7 \times 7 = 49$ (A.3.2.1)
2. A (C.2.2.2)
3. A (D.1.2.1)

Day 63

Answers:
1. 714 feet (B.1.2.2) (E.3.2.1)
2. D (A.5.2.1)
3. B

Day 64

Answers:
1. A (C.3.2.2)
2. No, because it is too hot for ice to freeze (B.1.2.2)

Day 65

Answers:
1. C (B.3.2.1) (A.1.2.2)
2. 20 meters (C.3.2.1)
3. A
Day 66
Answers: 1. 1/6, 2/6, 3/6, 5/6 (A.1.2.2) 2. C (B.1.2.2)
3. A Post Office, B (5,4) C Hot Dog Stand (C.3.2.2)

Day 67
Answers: Check student drawings. Each should have the correct number of sides and angles labeled. (C.1.2.1)

Day 68
Answers: 1. Student draws a hexagon, indicates line of symmetry and explains that a line of symmetry separates a polygon so that each side is the mirror image of the other. (C.2.2.1) 2. A (A.3.2.2)

Day 69
Answers: 1. A (A.2.2.1) 2. 2:45, 3:15, 3:45 (B.1.2.2) 3. B (C.1.2.1)
Day 70
Answers: 1. 1104 > 1014 (A.1.2.2) 2. A (B.2.2.2) 3. A (A.3.2.1)

Day 71
Answers: 1. A (B.1.2.2) 2. D (A.3.2.2) 3. 135cm (C.2.2.1)

Day 72
Answers: 1. (2x$1.75)+(3x$.75)+(3x$1.25)= n ; $11.25 (A.3.2.2)
2. B (B.1.2.2)

Day 73
Answers: 1. 1 mile (A.4.2.1) 2. B (C.3.2.2) 3. D (B.4.2.2)
<table>
<thead>
<tr>
<th>Day 74</th>
<th>Answers:</th>
<th>1. 7 (A.3.2.3)</th>
<th>2. 700meters (B.2.2.1)</th>
<th>3. $3.20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 75</td>
<td>Answers:</td>
<td>1. A (C.1.2.1)</td>
<td>2. A (B.4.2.1)</td>
<td>3. 125 (A.4.2.1)</td>
</tr>
<tr>
<td>Day 76</td>
<td>Answers:</td>
<td>1. 500sq. ft. (B.1.2.2)</td>
<td>2. A (C.1.2.1)</td>
<td>To find the area, you multiply the length times the width.</td>
</tr>
<tr>
<td>Day 77</td>
<td>Answers:</td>
<td>1. 95 (A.3.2.3)</td>
<td>2. 288 ft. (B.1.2.2)</td>
<td>3. A (D.2.2.1)</td>
</tr>
</tbody>
</table>
Day 78
Answers: 1. C (A.2.2.1)
2. 362 ft. (B.2.2.1)
3. C (B.1.2.2)

Day 79
Answers: 1. 8 hours (A.1.2.1)
2. A (B.4.2.1)
3. B (C.1.2.1)

Day 80
Answers: 1. View students drawing, should be symmetrical with shape given. Explanation: I drew the mirror image (flipped image) of the one shown along the line of symmetry.
2. C (A.3.2.1)
Day 81
Answers: 1. 12 cm. (B.1.2.2)
2. C (A.3.2.3)
3. B (D.1.2.1)

Day 82
Answers: 1. 182 (A.3.2.1)
2. B (B.1.2.2)
3. D (C.1.2.1)

Day 83
Answers: 1. 1520 (B.1.2.2)
2. A (B.1.2.2)
3. B (A.4.2.1)

Day 84
Answers: 1. 72 ounces. Explanation: (Answers may vary) Multiply 10 mangoes by 8 ounces, then subtract 8 ounces to obtain the weight of the bag of grapefruits. (D.2.2.2)
2. B (B.2.2.1)

Day 85
Answers: 1. D (A.3.2.1)
2. 1:15, 1:30, 1:45, 2:00 (B.1.2.2)
3. D (C.3.2.2)

Day 86
Answers: Student answers will vary. They should have drawn any figure with four straight sides and 4 angles. Examples: square, rectangle, rhombus, parallelogram, trapezoid. Explanation: My figure is a quadrilateral because it has four sides and four corners. (C.1.2.1)
Day 87
Answers: 1. A (B.4.2.1) 2. $55.95 (A.1.2.4) 3. 12; 24; 16; 18; 9; B (D.2.2.2)

Day 88
Answers: 1. 99 ÷ 33 = 3 buttons on each jacket. (A.3.2.3) 2. A (C.2.2.2)

Day 89
Answers: 1. 368 (A.3.2.3) 2. B (A.3.2.1) 3. C (B.4.2.2)

Day 90
Answers: 1. B (A.2.2.1) 2. Students should list winter clothing such as coats, scarves, gloves, etc. (B.1.2.2) 3. D (A.1.2.1)

Day 91
Answers: 1. B (D.1.2.2) 2. C (E.1.2.1)

Day 92
Answers: 1. No, because a gallon is too much for one person to drink. (B.1.2.2) 2. D (A.1.2.4)

Day 93
Answers: 1. 425 (C.3.2.1) 2. A (B.2.2.2) 3. C (C.2.2.1)

Day 94
Answers: 1. 5 (A.3.2.3) 2. 400 (B.2.2.1) 3. $4.80 (D.2.2.2)

Day 95
Answers: 1. B (A.1.2.2) 2. 15 (D.1.2.1) 3. C (C.3.2.1)
<table>
<thead>
<tr>
<th>Day 96</th>
</tr>
</thead>
</table>
| Answers: 1. Perimeter = 40 yards Area = 96 square yards (C.3.2.1)
2. B (B.2.2.2) |

<table>
<thead>
<tr>
<th>Day 97</th>
</tr>
</thead>
</table>
| Answers: 1. B (A.1.2.4)
(D.2.2.2)
2. about 1,900 (E.1.2.1)
3. D |

<table>
<thead>
<tr>
<th>Day 98</th>
</tr>
</thead>
</table>
| Answers: 1. C (E.1.2.2)
(C.3.2.1)
2. 10 yards (B.1.2.2)
3. C |

<table>
<thead>
<tr>
<th>Day 99</th>
</tr>
</thead>
</table>
| Answers: 1. Matt and Carlos
(A.1.2.4)
(D.2.2.2)
2. B (B.2.2.2)
3. D |

<table>
<thead>
<tr>
<th>Day 100</th>
</tr>
</thead>
</table>
| Answers: 1. Carla ate 2/3 of the pizza. She ate more because 2/3 is greater than 1/3.
(A.1.2.1)
2. A (C.3.2.1) |

<table>
<thead>
<tr>
<th>Day 101</th>
</tr>
</thead>
</table>
| Answers: 1. D (D.2.2.1)
(B.1.2.2)
2. C (C.2.2.1)
3. $130.00 |

<table>
<thead>
<tr>
<th>Day 102</th>
</tr>
</thead>
</table>
| Answers: 1. C (D.2.2.2)
2. A (E.1.2.1)
3. 1 and 4 (C.2.2.1) |

<table>
<thead>
<tr>
<th>Day 103</th>
</tr>
</thead>
</table>
| Answers: 1. B (A.1.2.4)
(E.1.2.1)
2. 20 gallons (D.1.2.2)
3. D |

<table>
<thead>
<tr>
<th>Day 104</th>
</tr>
</thead>
</table>
| Answers: 1. Yes, it would be approximately 4 glasses of water.
(B.1.2.2)
2. A (A.1.2.3) |

<table>
<thead>
<tr>
<th>Day 105</th>
</tr>
</thead>
</table>
| Possible Answers: Polygon A and B are congruent polygons. Polygon B represents a flip of Polygon A over the dotted line.
(C.2.2.2) |

<table>
<thead>
<tr>
<th>Day 106</th>
</tr>
</thead>
</table>
| Answers: 1. 57 (E.1.2.2)
(B.3.2.1)
2. A, B, C (A.1.2.4)
3. B |
Day 107
Answers: 1. 2 1/4, 2 1 3/4, 1 1/4 (A.1.2.2)
2. D (C.2.2.1)
3. B (D.2.2.2)

Day 108
Answers: 1. 1, 3
Explanation: These shapes have at least one pair of lines that would never intersect. (C.1.2.1)
2. B (B.3.2.1)

Day 109
Answers: 1. 2 (C.2.2.1)
2. D (D.2.2.1)
3. 580 inches (B.1.2.2)

Day 110
Answers: 1. 3 (C.2.2.1)
2. B (D.2.2.1)
3. A (E.1.2.2)

Day 111
Answers: 1. 2000 watts (D.1.2.2)
2. A (C.2.2.1)
3. C (B.2.2.2)

Day 112
Answers: 1. (18-2) ÷ 4 = 4 pencils for each friend (D.2.2.1)
2. B (A.1.2.2)

Day 113
Answers: 1. 10 (E.1.2.1)
2. C (B.2.2.2)
3. B (D.1.2.1)

Day 114
Answers: 1. 6 cards each, 1 left over (A.3.2.1)
2. C (B.2.2.2)
3. A (C.2.2.1)

Day 115
Answers: 1. A (C.1.2.1)
2. D (D.2.2.1)
3. 5000 mm (B.2.2.1)

Day 116
Answers: 1. 664,301
Explanation: Add 2 to the hundred thousands plus
1. (A.2.2.1)
2. D (B.4.2.1)

Day 117
Answers: 1. A (D.2.2.1)
2. Students should have drawn a square (C.1.2.1)
3. B (E.2.2.1)

Day 118
Answers: 1. 30 (A.2.2.1)
2. 10 (B.1.2.2)
3. 20 (D.1.2.1)
Day 119
Answers: 1. C (A.2.2.1) 2. 20 (D.2.2.2) 3. C (E.2.2.2)

Day 120
Answers: 1. 12 (D.2.2.1) 2. 3/4 cup (A.1.2.4)

Day 121
Answers: 1. D (A.2.2.1) 2. B (B.1.2.2) 3. C (E.1.2.3)

Day 122
Answers: 1. Students should have colored in 1/3, 1/2, and 1/4 respectively on the circle drawings. (A.1.2.3) 2. A (B.1.2.2) 3. C (C.1.2.1)

Day 123
Answers: 1. 20 ft. (B.1.2.2) 2. A (C.1.2.1) 3. B (D.2.2.1)

Day 124
Answers: 1. XXV (A.2.2.2) 2. C (C.1.2.1)

Day 125
Answers: 1. A (C.2.2.1) 2. 60 (D.2.2.2) 3. C (D.1.2.1)

Day 126
Answers: 1. C (A.3.2.3) 2. D (B.2.2.1) 3. 6 (E.1.2.2)

Day 127
Answers: 1. 200 (A.2.2.2) 2. 4 (A.1.2.1) 3. 18 feet (C.3.2.1)

Day 128
Answers: 1. 10 days Explanation: If the month is divided into thirds, there would be 10 days in each third. Therefore, 1/3 = 10 days. (E.2.2.2) 2. D (B.1.2.1) 3. A (B.1.2.1)

Day 129
Answers: 1. B (A.1.2.1) 2. 1/2 (D.2.2.2) 3. C (D.1.2.2)
<table>
<thead>
<tr>
<th>Day 130</th>
<th>Answers: Students should have drawn two different four-sided polygons. Explanation: A quadrilateral is a closed four sided polygon constructed using four line segments. (C.2.2.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 131</td>
<td>Answers: 1. trapezoid (C.3.2.2) 2. C (D.1.2.1) 3. 60 feet (B.1.2.2)</td>
</tr>
<tr>
<td>Day 132</td>
<td>Answers: 1. L (A.2.2.2) 2. A (C.3.2.2)</td>
</tr>
<tr>
<td>Day 133</td>
<td>Answers: 1. B (C.1.2.1) 2. 2 pts. (A.4.2.1) 3. B (B.1.2.2)</td>
</tr>
<tr>
<td>Day 134</td>
<td>Answers: 1. A (A.1.2.1) 2. B (D.1.2.1) 3. 18 lbs. (B.2.2.1)</td>
</tr>
<tr>
<td>Day 135</td>
<td>Answers: 1. D (E.2.2.1) 2. B (C.1.2.1) 3. (graphic for answers)</td>
</tr>
<tr>
<td>Day 136</td>
<td>Answers: 1. $100 + 50 + 5 = 155$ (A.2.2.2) 2. A (B.1.2.2)</td>
</tr>
<tr>
<td>Day 137</td>
<td>Answers: 1. A (A.2.2.2) 2. $2, 2 \frac{1}{2}, 3$ (D.1.2.2) 3. C (E.1.2.2)</td>
</tr>
<tr>
<td>Day 138</td>
<td>Answers: range = 56, mean = 57, median = 55 (E.1.2.2)</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Day 139</td>
<td>Answers: 1. 70,000 (A.2.2.1) 2. A (C.2.2.2) 3. C (B.4.2.1)</td>
</tr>
<tr>
<td>Day 140</td>
<td>Answers: 1. 4 pizzas Possible explanation: I have 12 friends times 3 pieces of pizza each. I need a total of 36 pieces of pizza. Divide that by the number of pieces in each pizza (9) to determine that you need 4 pizzas. (A.1.2.1) 2. A (C.2.2.2)</td>
</tr>
<tr>
<td>Day 141</td>
<td>Answers: 1. 600 feet (B.3.2.1) 2. A (C.2.2.2) 3. A (D.1.2.1)</td>
</tr>
<tr>
<td>Day 142</td>
<td>Answers: 1. A (B.2.2.1) 2. (5, 6) (C.3.2.2) 3. C (D.1.2.1)</td>
</tr>
<tr>
<td>Day 143</td>
<td>Answers: 1. 2/8 or 1/4 (A.1.2.4) 2. D (C.1.2.1) 3. A (C.1.2.1)</td>
</tr>
<tr>
<td>Day 144</td>
<td>Answers: 1. No. Possible explanation: Because if the last two pizzas were combined, it would only be 3/4 of a pizza. (A.1.2.1) 2. B (B.2.2.1)</td>
</tr>
<tr>
<td>Day 145</td>
<td>Answers: 1. C (A.2.2.2) 2. 70 (D.1.2.2) 3. D (D.2.2.1)</td>
</tr>
<tr>
<td>Day 146</td>
<td>Answers: 1. D (D.2.2.1) 2. B (C.1.2.1) 3. Length and width both 8m (B.3.2.1)</td>
</tr>
<tr>
<td>Day</td>
<td>Answers</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>147</td>
<td>1. A (A.2.2.1) 2. 80 (E.1.2.2) 3. C (C.1.2.1)</td>
</tr>
<tr>
<td>148</td>
<td>1. 8/15 (E.2.2.1) 2. B (B.2.2.1) 3. B (C.2.2.2)</td>
</tr>
<tr>
<td>149</td>
<td>1. 58,830 (A.2.2.1) 2. B (B.2.2.2) 3. B (D.2.2.1)</td>
</tr>
<tr>
<td>150</td>
<td>Check student responses for completeness and accuracy. (E.1.2.1)</td>
</tr>
<tr>
<td>151</td>
<td>1. C (B.1.2.2) 2. D (E.2.2.1) 3. C (C.2.2.2)</td>
</tr>
<tr>
<td>152</td>
<td>1. B (A.1.2.1) 2. (8, 1) (C.3.2.2) 3. A (D.2.2.1)</td>
</tr>
<tr>
<td>153</td>
<td>1. Figure A; Explanation: If Figure A was folded along the dotted line, the halves of the figure would match exactly. (C.1.2.1) 2. C (A.1.2.3)</td>
</tr>
<tr>
<td>154</td>
<td>1. C (E.2.2.1) 2. D (B.2.2.1) 3. 90 degrees (D.1.2.1)</td>
</tr>
<tr>
<td>155</td>
<td>1. 27 (A.1.2.1) 2. 270 m (B.1.2.2) 3. 756 logs (A.3.2.3)</td>
</tr>
</tbody>
</table>
| Day 156 | Answers: 1. D (A.1.2.1)
 2. 11 (E.1.2.2)
 3. C | (C.1.2.1) |
| Day 157 | Answers: 1. 21 (D.2.2.1)
 2. D (C.3.2.1) | |
| Day 158 | Answers: 1. About 375 marbles (A.4.2.1)
 2. C (E.2.2.1)
 3. D (C.3.2.2) | |
| Day 159 | Answers: 1. A (A.1.2.1)
 2. 11:05, 11:10, 11:15, 11:20, 11:25, 11:30
 (B.1.2.2)
 3. D (E.1.2.1) | |
| Day 160 | Answers: 1. B (A.1.2.1)
 2. C (C.3.2.2)
 3. 19 (D.2.2.2) | |
| Day 161 | Answers: 1. Accept all reasonable predictions. Possible answer: The number of tickets sold has shown a steady increase. There may have been 35 tickets sold on Saturday and 40 tickets sold on Sunday. (E.3.2.2)
 2. B (B.2.2.2) | |
| Day 162 | Answers: The section that is drawn must be labeled refrigerator and have an area that is greater than 25 square units but less than 45 square units (C.3.2.1) | |
| Day 163 | Answers: 1. B (A.1.2.3)
 2. B (B.1.2.2)
 3. 79 (E.1.2.1) | |
<table>
<thead>
<tr>
<th>Day</th>
<th>Answers</th>
</tr>
</thead>
</table>
| 164 | 1. A (C.3.2.1)
 2. D (D.1.2.1)
 3. 7 1/8, 7 1/6, 7 1/5, 7 1/3 (A.1.2.2) |
| 165 | 1. 20; Explanation: Input times 2 is output. (D.1.2.2)
 2. A (A.1.2.4) |
| 166 | 1. 3 1/2 inches tall, 1 1/2 inches wide (B.1.2.2)
 2. C (D.1.2.1)
 3. D (E.2.2.2) |
| 167 | 1. Square (C.3.2.2)
 2. B (D.2.2.1)
 3. B (A.1.2.4) |
| 168 | 1. 2,900 (A.2.2.1)
 2. 5 (A.1.2.1)
 3. 330 (A.4.2.1) |
| 169 | 1. D (B.2.2.1)
 2. D (C.2.2.2)
 3. 50 (D.2.2.2) |
| 170 | 1. $50.00 is enough money. Explanation: Round $4.97 to $5.00 and multiply by 10: $5.00 x 10 = $50.00 (A.4.2.1)
 2. C (E.2.2.2) |
| 171 | 1. A (C.2.2.1)
 2. C (D.1.2.2)
 3. 16 (E.1.2.2) |
| 172 | 1. B (B.3.2.1)
 2. B or C (A.3.2.2)
 3. 80 pages (D.1.2.1) |
<table>
<thead>
<tr>
<th>Day 173</th>
<th>Answers: 1. C (E.2.2.1)</th>
<th>2. B (C.2.2.1)</th>
<th>3. Chocolate chip and Butter (E.1.2 .3)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Day 174</th>
<th>Answers: 1. A (D.2.2.1)</th>
<th>2. B (E.1.2.2)</th>
<th>3. 9 milk-pizza; milk-burger; milk-taco; juice-pizza; juice-burger; juice-taco; water-pizza; water-burger; water-taco (E.2.2.1)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Day 175</th>
<th>Answers: 1. 2 pickles, 1 sandwich, 5 strawberries, 7 spoons of jello, 1/5 cake (A.3.2.1)</th>
<th>2. B (B.2.2.1)</th>
<th>3. B (D.2.2.1)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Day 176</th>
<th>Answers: 1. D (A.1.2.3)</th>
<th>2. C (C.2.2.1)</th>
<th>3. Brian (E.2.2.1)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Day 177</th>
<th>Answers: 1. C (B.1.2.1)</th>
<th>2. A D.1.2.2)</th>
<th>3. 3 million (E.3.2.2)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Day 178</th>
<th>Answers: 1. Less than 2 3/4. Explanation: There are 2 whole pizzas but only 1/4 of the last pizza. (A.1.2.1)</th>
<th>2. B (E.3.2.1)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Day 179</th>
<th>Answers: 1. B (E.1.2.2)</th>
<th>2. 64 x 9 = 576 cookies (A.3.2.3)</th>
<th>3. B (E.2.2.2)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Day 180</th>
<th>Answers: 1. C (D.2.2.2)</th>
<th>2. C (B.3.2.1)</th>
<th>3. Fish, grains, dairy (E.1.2.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BENCHMARK</td>
<td>DAY</td>
<td>ITEM</td>
<td>BENCHMARK</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>32</td>
<td>1</td>
<td>A.1.2.1</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>51</td>
<td>3</td>
<td>A.1.2.1</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>79</td>
<td>1</td>
<td>A.1.2.1</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>90</td>
<td>3</td>
<td>A.1.2.1</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>100</td>
<td>1</td>
<td>A.1.2.1</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>127</td>
<td>2</td>
<td>A.1.2.1</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>129</td>
<td>1</td>
<td>A.1.2.1</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>134</td>
<td>1</td>
<td>A.1.2.1</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>140</td>
<td>1</td>
<td>A.1.2.1</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>144</td>
<td>1</td>
<td>A.1.2.1</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>152</td>
<td>1</td>
<td>A.1.2.1</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>155</td>
<td>1</td>
<td>A.1.2.1</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>156</td>
<td>1</td>
<td>A.1.2.1</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>159</td>
<td>1</td>
<td>A.1.2.1</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>160</td>
<td>1</td>
<td>A.1.2.1</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>168</td>
<td>2</td>
<td>A.1.2.1</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>178</td>
<td>1</td>
<td>A.1.2.1</td>
</tr>
<tr>
<td>A.1.2.2</td>
<td>1</td>
<td>2</td>
<td>A.1.2.1</td>
</tr>
<tr>
<td>A.1.2.2</td>
<td>16</td>
<td>3</td>
<td>A.1.2.1</td>
</tr>
<tr>
<td>A.1.2.2</td>
<td>65</td>
<td>3</td>
<td>A.1.2.1</td>
</tr>
<tr>
<td>A.1.2.2</td>
<td>66</td>
<td>1</td>
<td>A.2.2.1</td>
</tr>
<tr>
<td>A.1.2.2</td>
<td>70</td>
<td>1</td>
<td>A.2.2.1</td>
</tr>
<tr>
<td>A.1.2.2</td>
<td>95</td>
<td>1</td>
<td>A.2.2.1</td>
</tr>
<tr>
<td>A.1.2.2</td>
<td>107</td>
<td>1</td>
<td>A.2.2.1</td>
</tr>
<tr>
<td>A.1.2.2</td>
<td>112</td>
<td>2</td>
<td>A.2.2.1</td>
</tr>
<tr>
<td>A.1.2.2</td>
<td>164</td>
<td>3</td>
<td>A.2.2.1</td>
</tr>
<tr>
<td>A.1.2.3</td>
<td>18</td>
<td>2</td>
<td>A.2.2.1</td>
</tr>
<tr>
<td>A.1.2.3</td>
<td>19</td>
<td>1</td>
<td>A.2.2.1</td>
</tr>
<tr>
<td>A.1.2.3</td>
<td>31</td>
<td>1</td>
<td>A.2.2.1</td>
</tr>
<tr>
<td>A.1.2.3</td>
<td>38</td>
<td>1</td>
<td>A.2.2.1</td>
</tr>
<tr>
<td>A.1.2.3</td>
<td>51</td>
<td>2</td>
<td>A.2.2.1</td>
</tr>
<tr>
<td>A.1.2.3</td>
<td>104</td>
<td>2</td>
<td>A.2.2.1</td>
</tr>
<tr>
<td>A.1.2.3</td>
<td>122</td>
<td>1</td>
<td>A.2.2.1</td>
</tr>
</tbody>
</table>
Fourth Grade Mathematics Dailies Correlations

<table>
<thead>
<tr>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2.2.1</td>
<td>147</td>
<td>1</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>149</td>
<td>1</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>168</td>
<td>1</td>
</tr>
<tr>
<td>A.2.2.2</td>
<td>124</td>
<td>1</td>
</tr>
<tr>
<td>A.2.2.2</td>
<td>127</td>
<td>1</td>
</tr>
<tr>
<td>A.2.2.2</td>
<td>132</td>
<td>1</td>
</tr>
<tr>
<td>A.2.2.2</td>
<td>136</td>
<td>1</td>
</tr>
<tr>
<td>A.2.2.2</td>
<td>137</td>
<td>1</td>
</tr>
<tr>
<td>A.2.2.2</td>
<td>145</td>
<td>1</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>27</td>
<td>1</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>47</td>
<td>2</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>62</td>
<td>1</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>70</td>
<td>3</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>80</td>
<td>2</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>82</td>
<td>1</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>85</td>
<td>1</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>89</td>
<td>2</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>114</td>
<td>1</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>175</td>
<td>1</td>
</tr>
<tr>
<td>A.2.2.2</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>A.2.2.2</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>A.2.2.2</td>
<td>21</td>
<td>1</td>
</tr>
<tr>
<td>A.2.2.2</td>
<td>23</td>
<td>2</td>
</tr>
<tr>
<td>A.2.2.2</td>
<td>26</td>
<td>2</td>
</tr>
<tr>
<td>A.2.2.2</td>
<td>37</td>
<td>3</td>
</tr>
<tr>
<td>A.2.2.2</td>
<td>46</td>
<td>1</td>
</tr>
<tr>
<td>A.2.2.2</td>
<td>59</td>
<td>3</td>
</tr>
<tr>
<td>A.2.2.2</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>A.3.2.2</td>
<td>61</td>
<td>2</td>
</tr>
<tr>
<td>A.3.2.2</td>
<td>68</td>
<td>2</td>
</tr>
<tr>
<td>A.3.2.2</td>
<td>71</td>
<td>2</td>
</tr>
<tr>
<td>A.3.2.2</td>
<td>72</td>
<td>1</td>
</tr>
<tr>
<td>A.3.2.2</td>
<td>172</td>
<td>2</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>28</td>
<td>3</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>39</td>
<td>1</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>74</td>
<td>1</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>77</td>
<td>1</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>81</td>
<td>2</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>88</td>
<td>1</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>89</td>
<td>1</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>94</td>
<td>1</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>126</td>
<td>1</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>155</td>
<td>3</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>179</td>
<td>2</td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>56</td>
<td>1</td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>73</td>
<td>1</td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>83</td>
<td>3</td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>133</td>
<td>2</td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>158</td>
<td>1</td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>168</td>
<td>3</td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>170</td>
<td>1</td>
</tr>
<tr>
<td>A.5.2.1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>A.5.2.1</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>A.5.2.1</td>
<td>63</td>
<td>2</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>52</td>
<td>1</td>
</tr>
</tbody>
</table>
Fourth Grade Mathematics Dailies Correlations

<table>
<thead>
<tr>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1.2.1</td>
<td>27</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.1.2.1</td>
<td>5</td>
<td>2</td>
<td>B.1.2.2</td>
<td>92</td>
<td>1</td>
</tr>
<tr>
<td>B.1.2.1</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.1.2.1</td>
<td>61</td>
<td>1</td>
<td>B.1.2.2</td>
<td>109</td>
<td>3</td>
</tr>
<tr>
<td>B.1.2.1</td>
<td>128</td>
<td>2</td>
<td>B.1.2.2</td>
<td>118</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.1</td>
<td>128</td>
<td>3</td>
<td>B.1.2.2</td>
<td>121</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.1</td>
<td>177</td>
<td>1</td>
<td>B.1.2.2</td>
<td>122</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>13</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>15</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>26</td>
<td>1</td>
<td>B.1.2.2</td>
<td>133</td>
<td>3</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>28</td>
<td>2</td>
<td>B.1.2.2</td>
<td>136</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>31</td>
<td>2</td>
<td>B.1.2.2</td>
<td>151</td>
<td>1</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>34</td>
<td>2</td>
<td>B.1.2.2</td>
<td>155</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>37</td>
<td>1</td>
<td>B.1.2.2</td>
<td>159</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>41</td>
<td>3</td>
<td>B.1.2.2</td>
<td>163</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>46</td>
<td>2</td>
<td>B.1.2.2</td>
<td>166</td>
<td>1</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>55</td>
<td>2</td>
<td>B.2.2.1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>59</td>
<td>1</td>
<td>B.2.2.1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>63</td>
<td>1</td>
<td>B.2.2.1</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>64</td>
<td>2</td>
<td>B.2.2.1</td>
<td>35</td>
<td>3</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>66</td>
<td>2</td>
<td>B.2.2.1</td>
<td>42</td>
<td>1</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>69</td>
<td>2</td>
<td>B.2.2.1</td>
<td>42</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>71</td>
<td>1</td>
<td>B.2.2.1</td>
<td>74</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>72</td>
<td>2</td>
<td>B.2.2.1</td>
<td>78</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>76</td>
<td>1</td>
<td>B.2.2.1</td>
<td>84</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>77</td>
<td>2</td>
<td>B.2.2.1</td>
<td>94</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>78</td>
<td>3</td>
<td>B.2.2.1</td>
<td>115</td>
<td>3</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>81</td>
<td>1</td>
<td>B.2.2.1</td>
<td>126</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>82</td>
<td>2</td>
<td>B.2.2.1</td>
<td>134</td>
<td>3</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>83</td>
<td>1</td>
<td>B.2.2.1</td>
<td>142</td>
<td>1</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>83</td>
<td>2</td>
<td>B.2.2.1</td>
<td>144</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>85</td>
<td>2</td>
<td>B.2.2.1</td>
<td>148</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>90</td>
<td>2</td>
<td>B.2.2.1</td>
<td>154</td>
<td>2</td>
</tr>
</tbody>
</table>
Fourth Grade Mathematics Dailies Correlations

<table>
<thead>
<tr>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.2.2.1</td>
<td>169</td>
<td>1</td>
<td>B.4.2.1</td>
<td>87</td>
<td>1</td>
</tr>
<tr>
<td>B.2.2.1</td>
<td>175</td>
<td>2</td>
<td>B.4.2.1</td>
<td>116</td>
<td>2</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>3</td>
<td>2</td>
<td>B.4.2.1</td>
<td>139</td>
<td>3</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>24</td>
<td>2</td>
<td>B.4.2.2</td>
<td>73</td>
<td>3</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>32</td>
<td>2</td>
<td>B.4.2.2</td>
<td>89</td>
<td>3</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>33</td>
<td>2</td>
<td>C.1.2.1</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>56</td>
<td>2</td>
<td>C.1.2.1</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>70</td>
<td>2</td>
<td>C.1.2.1</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>93</td>
<td>2</td>
<td>C.1.2.1</td>
<td>41</td>
<td>1</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>96</td>
<td>2</td>
<td>C.1.2.1</td>
<td>55</td>
<td>3</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>99</td>
<td>2</td>
<td>C.1.2.1</td>
<td>67</td>
<td>1</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>111</td>
<td>3</td>
<td>C.1.2.1</td>
<td>69</td>
<td>3</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>113</td>
<td>2</td>
<td>C.1.2.1</td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>114</td>
<td>2</td>
<td>C.1.2.1</td>
<td>76</td>
<td>2</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>149</td>
<td>2</td>
<td>C.1.2.1</td>
<td>79</td>
<td>3</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>161</td>
<td>2</td>
<td>C.1.2.1</td>
<td>82</td>
<td>3</td>
</tr>
<tr>
<td>B.3.2.1</td>
<td>6</td>
<td>2</td>
<td>C.1.2.1</td>
<td>86</td>
<td>1</td>
</tr>
<tr>
<td>B.3.2.1</td>
<td>49</td>
<td>2</td>
<td>C.1.2.1</td>
<td>108</td>
<td>1</td>
</tr>
<tr>
<td>B.3.2.1</td>
<td>56</td>
<td>3</td>
<td>C.1.2.1</td>
<td>115</td>
<td>1</td>
</tr>
<tr>
<td>B.3.2.1</td>
<td>58</td>
<td>2</td>
<td>C.1.2.1</td>
<td>117</td>
<td>2</td>
</tr>
<tr>
<td>B.3.2.1</td>
<td>65</td>
<td>1</td>
<td>C.1.2.1</td>
<td>122</td>
<td>3</td>
</tr>
<tr>
<td>B.3.2.1</td>
<td>106</td>
<td>3</td>
<td>C.1.2.1</td>
<td>123</td>
<td>2</td>
</tr>
<tr>
<td>B.3.2.1</td>
<td>108</td>
<td>2</td>
<td>C.1.2.1</td>
<td>124</td>
<td>2</td>
</tr>
<tr>
<td>B.3.2.1</td>
<td>141</td>
<td>1</td>
<td>C.1.2.1</td>
<td>133</td>
<td>1</td>
</tr>
<tr>
<td>B.3.2.1</td>
<td>146</td>
<td>3</td>
<td>C.1.2.1</td>
<td>135</td>
<td>2</td>
</tr>
<tr>
<td>B.3.2.1</td>
<td>172</td>
<td>1</td>
<td>C.1.2.1</td>
<td>143</td>
<td>2</td>
</tr>
<tr>
<td>B.3.2.1</td>
<td>180</td>
<td>2</td>
<td>C.1.2.1</td>
<td>143</td>
<td>3</td>
</tr>
<tr>
<td>B.4.2.1</td>
<td>11</td>
<td>3</td>
<td>C.1.2.1</td>
<td>146</td>
<td>2</td>
</tr>
<tr>
<td>B.4.2.1</td>
<td>38</td>
<td>2</td>
<td>C.1.2.1</td>
<td>147</td>
<td>3</td>
</tr>
<tr>
<td>B.4.2.1</td>
<td>39</td>
<td>2</td>
<td>C.1.2.1</td>
<td>153</td>
<td>1</td>
</tr>
<tr>
<td>B.4.2.1</td>
<td>52</td>
<td>3</td>
<td>C.1.2.1</td>
<td>156</td>
<td>3</td>
</tr>
<tr>
<td>B.4.2.1</td>
<td>75</td>
<td>2</td>
<td>C.2.2.1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>B.4.2.1</td>
<td>79</td>
<td>2</td>
<td>C.2.2.1</td>
<td>23</td>
<td>3</td>
</tr>
</tbody>
</table>
Fourth Grade Mathematics Dailies Correlations

<table>
<thead>
<tr>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.2.2.1</td>
<td>36</td>
<td>1</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>46</td>
<td>3</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>48</td>
<td>1</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>49</td>
<td>3</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>68</td>
<td>1</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>71</td>
<td>3</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>93</td>
<td>3</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>101</td>
<td>2</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>102</td>
<td>3</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>107</td>
<td>2</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>109</td>
<td>1</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>110</td>
<td>1</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>111</td>
<td>2</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>114</td>
<td>3</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>125</td>
<td>1</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>130</td>
<td>1</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>135</td>
<td>3</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>171</td>
<td>1</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>173</td>
<td>2</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>176</td>
<td>2</td>
</tr>
<tr>
<td>C.2.2.2</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>C.2.2.2</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>C.2.2.2</td>
<td>21</td>
<td>2</td>
</tr>
<tr>
<td>C.2.2.2</td>
<td>32</td>
<td>3</td>
</tr>
<tr>
<td>C.2.2.2</td>
<td>54</td>
<td>1</td>
</tr>
<tr>
<td>C.2.2.2</td>
<td>59</td>
<td>2</td>
</tr>
<tr>
<td>C.2.2.2</td>
<td>62</td>
<td>2</td>
</tr>
<tr>
<td>C.2.2.2</td>
<td>88</td>
<td>2</td>
</tr>
<tr>
<td>C.2.2.2</td>
<td>105</td>
<td>1</td>
</tr>
<tr>
<td>C.2.2.2</td>
<td>139</td>
<td>2</td>
</tr>
<tr>
<td>C.2.2.2</td>
<td>140</td>
<td>2</td>
</tr>
<tr>
<td>C.2.2.2</td>
<td>141</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.2.2.2</td>
<td>148</td>
<td>3</td>
</tr>
<tr>
<td>C.2.2.2</td>
<td>151</td>
<td>3</td>
</tr>
<tr>
<td>C.2.2.2</td>
<td>169</td>
<td>2</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>27</td>
<td>3</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>52</td>
<td>2</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>58</td>
<td>1</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>65</td>
<td>2</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>93</td>
<td>1</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>95</td>
<td>3</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>96</td>
<td>1</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>98</td>
<td>3</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>127</td>
<td>3</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>157</td>
<td>2</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>162</td>
<td>1</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>164</td>
<td>1</td>
</tr>
<tr>
<td>C.3.2.2</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>C.3.2.2</td>
<td>45</td>
<td>2</td>
</tr>
<tr>
<td>C.3.2.2</td>
<td>47</td>
<td>1</td>
</tr>
<tr>
<td>C.3.2.2</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>C.3.2.2</td>
<td>66</td>
<td>3</td>
</tr>
<tr>
<td>C.3.2.2</td>
<td>73</td>
<td>2</td>
</tr>
<tr>
<td>C.3.2.2</td>
<td>85</td>
<td>3</td>
</tr>
<tr>
<td>C.3.2.2</td>
<td>131</td>
<td>1</td>
</tr>
<tr>
<td>C.3.2.2</td>
<td>132</td>
<td>2</td>
</tr>
<tr>
<td>C.3.2.2</td>
<td>142</td>
<td>2</td>
</tr>
<tr>
<td>C.3.2.2</td>
<td>152</td>
<td>2</td>
</tr>
<tr>
<td>C.3.2.2</td>
<td>158</td>
<td>3</td>
</tr>
<tr>
<td>C.3.2.2</td>
<td>160</td>
<td>2</td>
</tr>
</tbody>
</table>
Fourth Grade Mathematics Dailies Correlations

<table>
<thead>
<tr>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.3.2.2</td>
<td>167</td>
<td>1</td>
<td>D.2.2.1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>9</td>
<td>2</td>
<td>D.2.2.1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>16</td>
<td>1</td>
<td>D.2.2.1</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>28</td>
<td>1</td>
<td>D.2.2.1</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>53</td>
<td>1</td>
<td>D.2.2.1</td>
<td>34</td>
<td>3</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>53</td>
<td>2</td>
<td>D.2.2.1</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>62</td>
<td>3</td>
<td>D.2.2.1</td>
<td>41</td>
<td>2</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>81</td>
<td>3</td>
<td>D.2.2.1</td>
<td>44</td>
<td>2</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>95</td>
<td>2</td>
<td>D.2.2.1</td>
<td>77</td>
<td>3</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>113</td>
<td>3</td>
<td>D.2.2.1</td>
<td>101</td>
<td>1</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>118</td>
<td>3</td>
<td>D.2.2.1</td>
<td>109</td>
<td>2</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>125</td>
<td>3</td>
<td>D.2.2.1</td>
<td>110</td>
<td>2</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>131</td>
<td>3</td>
<td>D.2.2.1</td>
<td>112</td>
<td>1</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>134</td>
<td>2</td>
<td>D.2.2.1</td>
<td>115</td>
<td>2</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>141</td>
<td>3</td>
<td>D.2.2.1</td>
<td>117</td>
<td>1</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>142</td>
<td>3</td>
<td>D.2.2.1</td>
<td>120</td>
<td>1</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>154</td>
<td>3</td>
<td>D.2.2.1</td>
<td>123</td>
<td>3</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>164</td>
<td>2</td>
<td>D.2.2.1</td>
<td>145</td>
<td>3</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>166</td>
<td>2</td>
<td>D.2.2.1</td>
<td>146</td>
<td>1</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>172</td>
<td>3</td>
<td>D.2.2.1</td>
<td>149</td>
<td>3</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>7</td>
<td>1</td>
<td>D.2.2.1</td>
<td>152</td>
<td>3</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>8</td>
<td>1</td>
<td>D.2.2.1</td>
<td>157</td>
<td>1</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>22</td>
<td>1</td>
<td>D.2.2.1</td>
<td>167</td>
<td>2</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>37</td>
<td>2</td>
<td>D.2.2.1</td>
<td>174</td>
<td>1</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>91</td>
<td>1</td>
<td>D.2.2.1</td>
<td>175</td>
<td>3</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>103</td>
<td>2</td>
<td>D.2.2.2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>111</td>
<td>1</td>
<td>D.2.2.2</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>129</td>
<td>3</td>
<td>D.2.2.2</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>137</td>
<td>2</td>
<td>D.2.2.2</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>145</td>
<td>2</td>
<td>D.2.2.2</td>
<td>38</td>
<td>3</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>165</td>
<td>1</td>
<td>D.2.2.2</td>
<td>43</td>
<td>2</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>171</td>
<td>2</td>
<td>D.2.2.2</td>
<td>58</td>
<td>3</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>177</td>
<td>2</td>
<td>D.2.2.2</td>
<td>74</td>
<td>3</td>
</tr>
</tbody>
</table>
Fourth Grade Mathematics Dailies Correlations

<table>
<thead>
<tr>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>D.2.2.2</td>
<td>84</td>
<td>1</td>
<td>E.1.2.2</td>
<td>104</td>
<td>1</td>
</tr>
<tr>
<td>D.2.2.2</td>
<td>87</td>
<td>3</td>
<td>E.1.2.2</td>
<td>106</td>
<td>1</td>
</tr>
<tr>
<td>D.2.2.2</td>
<td>94</td>
<td>3</td>
<td>E.1.2.2</td>
<td>110</td>
<td>3</td>
</tr>
<tr>
<td>D.2.2.2</td>
<td>97</td>
<td>3</td>
<td>E.1.2.2</td>
<td>126</td>
<td>3</td>
</tr>
<tr>
<td>D.2.2.2</td>
<td>99</td>
<td>3</td>
<td>E.1.2.2</td>
<td>137</td>
<td>3</td>
</tr>
<tr>
<td>D.2.2.2</td>
<td>102</td>
<td>1</td>
<td>E.1.2.2</td>
<td>138</td>
<td>1</td>
</tr>
<tr>
<td>D.2.2.2</td>
<td>107</td>
<td>3</td>
<td>E.1.2.2</td>
<td>147</td>
<td>2</td>
</tr>
<tr>
<td>D.2.2.2</td>
<td>119</td>
<td>2</td>
<td>E.1.2.2</td>
<td>156</td>
<td>2</td>
</tr>
<tr>
<td>D.2.2.2</td>
<td>125</td>
<td>2</td>
<td>E.1.2.2</td>
<td>171</td>
<td>3</td>
</tr>
<tr>
<td>D.2.2.2</td>
<td>129</td>
<td>2</td>
<td>E.1.2.2</td>
<td>174</td>
<td>2</td>
</tr>
<tr>
<td>D.2.2.2</td>
<td>160</td>
<td>3</td>
<td>E.1.2.2</td>
<td>179</td>
<td>1</td>
</tr>
<tr>
<td>D.2.2.2</td>
<td>169</td>
<td>3</td>
<td>E.1.2.3</td>
<td>121</td>
<td>3</td>
</tr>
<tr>
<td>D.2.2.2</td>
<td>180</td>
<td>1</td>
<td>E.1.2.3</td>
<td>173</td>
<td>3</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>30</td>
<td>1</td>
<td>E.2.2.1</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>33</td>
<td>1</td>
<td>E.2.2.1</td>
<td>45</td>
<td>1</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>40</td>
<td>1</td>
<td>E.2.2.1</td>
<td>57</td>
<td>3</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>91</td>
<td>2</td>
<td>E.2.2.1</td>
<td>117</td>
<td>3</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>97</td>
<td>2</td>
<td>E.2.2.1</td>
<td>135</td>
<td>1</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>102</td>
<td>2</td>
<td>E.2.2.1</td>
<td>148</td>
<td>1</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>103</td>
<td>3</td>
<td>E.2.2.1</td>
<td>151</td>
<td>2</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>113</td>
<td>1</td>
<td>E.2.2.1</td>
<td>154</td>
<td>1</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>150</td>
<td>1</td>
<td>E.2.2.1</td>
<td>158</td>
<td>2</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>159</td>
<td>3</td>
<td>E.2.2.1</td>
<td>173</td>
<td>1</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>163</td>
<td>3</td>
<td>E.2.2.1</td>
<td>174</td>
<td>3</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>180</td>
<td>3</td>
<td>E.2.2.1</td>
<td>176</td>
<td>3</td>
</tr>
<tr>
<td>E.1.2.2</td>
<td>1</td>
<td>1</td>
<td>E.2.2.2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>E.1.2.2</td>
<td>24</td>
<td>3</td>
<td>E.2.2.2</td>
<td>29</td>
<td>1</td>
</tr>
<tr>
<td>E.1.2.2</td>
<td>36</td>
<td>2</td>
<td>E.2.2.2</td>
<td>54</td>
<td>2</td>
</tr>
<tr>
<td>E.1.2.2</td>
<td>39</td>
<td>3</td>
<td>E.2.2.2</td>
<td>119</td>
<td>3</td>
</tr>
<tr>
<td>E.1.2.2</td>
<td>44</td>
<td>1</td>
<td>E.2.2.2</td>
<td>128</td>
<td>1</td>
</tr>
<tr>
<td>E.1.2.2</td>
<td>57</td>
<td>2</td>
<td>E.2.2.2</td>
<td>166</td>
<td>3</td>
</tr>
<tr>
<td>E.1.2.2</td>
<td>60</td>
<td>2</td>
<td>E.2.2.2</td>
<td>170</td>
<td>2</td>
</tr>
<tr>
<td>E.1.2.2</td>
<td>98</td>
<td>1</td>
<td>E.2.2.2</td>
<td>179</td>
<td>3</td>
</tr>
<tr>
<td>BENCHMARK</td>
<td>DAY</td>
<td>ITEM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.3.2.1</td>
<td>6</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.3.2.1</td>
<td>22</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.3.2.1</td>
<td>63</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.3.2.1</td>
<td>178</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.3.2.2</td>
<td>20</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.3.2.2</td>
<td>43</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.3.2.2</td>
<td>161</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.3.2.2</td>
<td>177</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>