Daily Questions

Elementary Mathematics

FCAT

Daily Questions

Grade 5
1. One-half of a figure is shown below. The dotted line represents a line of symmetry.

[Grid Image]

What would be the area of the figure if the missing portion of the figure was drawn?
A. 9 square units
B. 12 square units
C. 16 square units
D. 24 square units

2. Terrance and Juan carved cars for their Cub Scout troop’s Pinewood Derby. Since their 8-inch long cars have no motor, the boys hope that their cars will coast quickly down the slanted track. What is a reasonable length for the track?
A. 1 foot
B. 10 yards
C. 1 mile
D. 10 miles

3. If the following two pans are in perfect balance, how much does one cube weigh?

[Balance Image]

4. Susan picked 48 oranges from her mother’s fruit tree. Yesterday she picked three times that many plus 5 more. How many oranges did Susan pick yesterday?
1. Show the correct operations to equal 10.

\[
2 \quad \square \quad 6 \quad \square \quad 2 = 10
\]

A. + and -
B. + and +
C. x and -
D. x and +

2. Erin has 5 red marbles, 8 green marbles, 6 blue marbles, and 4 black marbles in a bag. Each marble is the same size. If she takes one marble out of the bag without looking, which color will most likely not be chosen?

A. black
B. blue
C. green
D. red

3. How many 100’s are in 5,000?

4. Students have been practicing their keyboarding skills on the computer. The chart below represents the words per minute that four students typed.

<table>
<thead>
<tr>
<th>Student Names</th>
<th>Words Typed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe</td>
<td>159</td>
</tr>
<tr>
<td>Kelly</td>
<td>173</td>
</tr>
<tr>
<td>Bob</td>
<td>148</td>
</tr>
<tr>
<td>Shakia</td>
<td>116</td>
</tr>
</tbody>
</table>

What is the mean speed of typing for the students listed above?
1. Plot the following coordinates and connect the points in order: (2,2), (2,5), (5,5), and (5,2). Then connect the last point to the first point. What shape is created?

Correct shape: ____________________

2. To make the third scale balance, what could you add to the left side of the scale?

A. △
B. △△
C. □
D. ○

3. What do all of the following numbers have in common?

2, 3, 7, 9, 11, 13

A. They are all odd numbers.
B. They are all prime numbers.
C. They are all factors of 21.
D. They are all composite numbers.
1. Jeremy is collecting data to discover his classmate’s favorite time of day. To help collect the data, he is thinking about distributing cards like the card shown below.

What is Your Favorite Time of Day?
Please check one:
☐ Morning 6:00 A.M. to 12:00 P.M.
☐ Afternoon 12:00 P.M. to 6:00 P.M.
☐ Evening 6:00 P.M. to 12:00 A.M.

What else could Jeremy include on the card to make a more complete survey?

A. A return address
B. The words, “Thank you”
C. A checkbox with the words, “No, I don’t wish to be a part of your survey.”
D. Night 12:00 A.M. to 6:00 A.M.

2. The average human sheds 40 pounds of skin in a lifetime. Calculate the number of ounces in this amount.

 (16 ounces = 1 pound)

 A. 3
 B. 40
 C. 400
 D. 640

3. Harold played nine holes of golf with his mother yesterday. Here are his scores on all the holes: 7, 6, 3, 5, 8, 6, 5, 7, and 5. What is the median of his score? (The median is the middle number when data are arranged in order.)

4. Solve the riddle using the clues and numbers in the table.

 It is not 3 x 4.
 It is not >56.
 It does not equal 4 tens.
 It does not equal 2 x 7.
 It is not the missing number in 3 x n = 12.

 The number is ______________.

<table>
<thead>
<tr>
<th>40</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>59</td>
<td>37</td>
</tr>
</tbody>
</table>
1. The floor plan of a classroom is shown below. It shows space for a computer and space for a bookshelf.

Draw another space on the grid. The space you draw should have an area that is greater than the bookshelf area but less than the computer area. Label the space you draw *storage*. Explain how you determined the area of the storage space.
1. Kelly needs to measure out 3/4 lb. of sugar for a cake recipe that she is making. Unfortunately, she has a scale that only shows the decimal value of weight. What is the decimal equivalent of 3/4 lb.?

A. 0.25
B. 0.75
C. 1.75
D. 75.00

2. Tommy, Lisa, and Chris each want an equal portion of the pizza. Which picture represents the pizza already divided so that each can have an equal number of pieces?

 A.
 B.
 C.
 D.

3. Renard created a pattern with pennies that looked like this:

 How many pennies will be in his next group?

4. The leg of an average six-foot tall man has a femur that is 48 centimeters long. What is the length in millimeters, of this femur?
 (1 cm = 10 mm)
1. This spinner is divided into eight equal parts. Suppose the spinner is spun once. Which statement shown below is true?

A. 8 is the most likely outcome.
B. 5 is the least likely outcome.
C. 3 is the most likely outcome.
D. Each outcome shown on the spinner is equally likely.

2. Mario flipped this figure over the broken line.

Which of the following shows the figure after the flip?

A.

B.

C.

D.

1. Keisha is 5 years older than her brother Patrick. If \(n \) represents Keisha’s age, which expression below represents Patrick’s age?

 A. \(n + 5 \)
 B. \(n - 5 \)
 C. \(5 + n \)
 D. \(5 - n \)

2. Complete the number chain. What number belongs in the box at the end of the chain?
 \[15 \div 3 = ___ \times 5 = ___ - 9 = ___ + 6 = ___ \div ___ = 1 \]

 A. 2
 B. 3
 C. 22
 D. 36

3. John and Susie are playing a spinning game. The first player to land on his or her color 10 times wins. John is the shaded section and Susie is the unshaded section.

 If you were John, would you play this game? Why or why not? Explain.
1. On the first Saturday in April, each of 16 members of a fifth grade class worked 2.5 hours planting trees, shrubs, and flowers around their school. Their teacher, Ms. Jackson, worked 4 hours.

\[
\begin{array}{c}
16 \\
2.5 \\
4
\end{array}
\]

Which operations could be used in the squares above to find the total number of hours that were worked?

A. \times and $+$
B. $+$ and $+$
C. \times and \times
D. $+$ and $-$

2. If 1 square = 2 circles and 1 triangle = 3 circles, how many circles would need to be placed on the other side of the scale to balance the scale?

A. 10
B. 8
C. 6
D. 3

3. On a classroom coat rack, coats are hanging on \(\frac{6}{10}\) of the hooks. What percent of the coat rack is being used today?

4. To help complete an art project, Miss Sanford wants to give each of her 24 students 4 paper clips. What is the exact number of paper clips Miss Sanford will need?
1. Jermaine earns $4.25 for each hour he helps his brother work. Last week, Jermaine worked 3 hours during the week and 7 hours during the weekend. What amount of money did Jermaine earn last week?

2. The weight of an automobile is 2,459 lbs. How many pounds more than 2 tons does the automobile weigh? (2,000 pounds = 1 ton)

3. The population of the 13 English colonies in America grew quickly. How many more people were living in the colonies in 1760 than in 1660?

Population of the 13 English Colonies

[Graph showing the population growth of the 13 English Colonies from 1660 to 1760.]
1. The figure below has been moved from Location A to Location B.

![Diagram of a figure moved from Location A to Location B]

Which word best describes the movement?
A. flip
B. slide
C. turn
D. reflection

2. An Apollo mission from Earth to the Moon covers a distance of 250,000 miles. This distance is represented by \(n \). Which of the following would represent a round trip?
A. \(n + 2 \)
B. \(n - 2 \)
C. \(\frac{n}{2} \)
D. \(2n \)

3. The length of the rectangular floor of a classroom is twice as long as its width. The area of the floor is 1800 square feet. What is the width of the floor in feet? (Area = length \(\times \) width)

4. The shelf shown below is located in the bakery section of a grocery store. About what percentage of the shelf is used for pies?

![Image of a shelf with Colony items]

A. 20%
B. 24%
C. 75%
D. 80%
1. The table below shows the input and output of various numbers.

<table>
<thead>
<tr>
<th>Input</th>
<th>1.8</th>
<th>2.4</th>
<th>4.0</th>
<th>5.5</th>
<th>7.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>5.4</td>
<td>7.2</td>
<td>12.0</td>
<td>16.5</td>
<td>?</td>
</tr>
</tbody>
</table>

Look for the rule. What number completes the table?
A. 4.2
B. 6.4
C. 21
D. 20

2. What is 35.57 rounded to the nearest whole number?

3. A group of students was asked to name their favorite kind of music. Their answers to the question are shown in this chart.

<table>
<thead>
<tr>
<th>Types of Music</th>
<th>Rock and Roll</th>
<th>Classical</th>
<th>Rap</th>
<th>Folk</th>
<th>R & B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What is the range of the data? (range = the difference between the greatest and least numbers in the data)
A. 40
B. 8
C. 7
D. 5
1. Predict the name of the figure this pattern will make. (The arrows indicate a fold line)

A. prism B. pyramid C. cube D. cone

2. The continent of North America accounts for 20% of the land area on Earth. Which fraction best represents the land area of North America?

A. $\frac{1}{3}$ B. $\frac{1}{4}$ C. $\frac{1}{5}$ D. $\frac{1}{8}$

3. At the plant nursery, there are a number of different types of plants to buy. If you wanted to plant a tree with the shape that is the most symmetrical, which of the following would you choose?

Circle the one that is the most symmetrical.
Explain what makes it symmetrical.
1. Which expression does **not** equal a multiple of 27?
 A. $3 \times 3 \times 3$
 B. 9×9
 C. 3×21
 D. 2×27

2. Choose a reasonable metric unit to measure the length of a crayon.
 A. decameters
 B. centimeters
 C. meters
 D. kilometers

3. Mrs. Smith’s class is planting a garden. The garden is planted in the shape of a rectangle. The area of the garden is 1200 square feet. What would be the length in feet of one side of the garden? (Area = length x width)

 width = 30 ft.

 length = ________

4. A fifth grade class read the Newbery Award winning book *The Twenty-One Balloons* by William Pene DuBois. The book has 180 pages. The teacher assigned 5 pages the first week. The second week 15 pages were assigned. The third week’s assignment was 25 pages.

<table>
<thead>
<tr>
<th>WEEK</th>
<th>ASSIGNED</th>
<th>TOTAL PAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Assuming the pattern continued, what is the total number of weeks it took the class to finish the book from beginning to end?
1. The grades of Lauren, Nick, Matt, and Jessica are recorded on the bar graph below. Use the graph to answer the following questions, and round your answers to the nearest whole number.

A. What was the mean score?
B. If Nick had not taken the test, what would be the mean score of the remaining three scores?
C. If Jessica had not taken the test, what would be the mean score of the remaining three scores?
Grade 5 • Mathematics Review Day 16

1. Luis filled $\frac{1}{3}$ of his fish tank with water. Which fish tank has a shaded area that represents $\frac{1}{3}$?

A.
B.
C.
D.

2. The 24 students in Ms. Anderson’s class are collecting stamps for their social studies project. Each student brought in 4 stamps and Ms. Anderson brought in 8. Which expression shows how to find the total number of stamps collected?

A. $24 + 4 + 8$
B. $24 - 8 + 4$
C. $24 \times 4 + 8$
D. $4 \times 8 + 24$

3. Allison and Daniel were keeping track of the high and low temperatures in four North American cities. The findings for one day are recorded, in degrees Fahrenheit, in the table below.

<table>
<thead>
<tr>
<th>Cities</th>
<th>Lows</th>
<th>Highs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boston</td>
<td>29°</td>
<td>46°</td>
</tr>
<tr>
<td>Dallas</td>
<td>44°</td>
<td>64°</td>
</tr>
<tr>
<td>Cheyenne</td>
<td>25°</td>
<td>48°</td>
</tr>
<tr>
<td>Atlanta</td>
<td>42°</td>
<td>58°</td>
</tr>
</tbody>
</table>

Which city had the greatest difference between its high and low temperatures?

A. Atlanta
B. Boston
C. Cheyenne
D. Dallas

4. During the month of June, of the days were rainy. Which number sentence could be used to find n, the number of rainy days during June?

A. $30 \times \frac{1}{6} = n$
B. $30 \div \frac{1}{6} = n$
C. $30 \times 6 = n$
D. $30 - 6 = n$
1. Andrew wants to drink 2L of water each day. He has already had four 250 ml glasses today. How many more glasses of water should he drink?
 A. 1 glass
 B. 2 glasses
 C. 4 glasses
 D. 8 glasses

2. A pattern of blocks is shown below.

 1 block high
 2 blocks high
 3 blocks high

 How many blocks will be used to make a tower that is five blocks high?

3. Ms. Zena wants her class to make Valentine cards for the residents of a local nursing home. There are 26 students in her class, and each student will make one card. Ms. Zena wants the students to put lace around the front of the cards. The cards are 4 inches long and 3 inches wide. How many inches of lace are needed for the entire class?

4. The director of the city recreation department took a group of 12 fifth graders on a trip to a water park in return for helping with the Summer Recreation Program. The tickets cost $4.95 each (chaperones were admitted free of charge). After purchasing the tickets, the director had $30.60 left for snacks. How much money did the recreation director originally have for this trip?
1. How many quadrilaterals are in this design?

A. 9
B. 8
C. 7
D. 6

2. Shawna’s mother is four times Shawna’s age. If her mother is 44 years old, which equation will give you Shawna’s age (N)?

A. \(N = 44 - \frac{1}{4} \)
B. \(N = 44 - 40 \)
C. \(N = 44 \div \frac{1}{4} \)
D. \(N = 44 \times \frac{1}{4} \)

3. Suppose you spun a paper clip on the spinner 64 times. How many times would you expect it to land on:

- Green?
- Blue?
- Yellow?
- Red?

Explain how you got your answers.
1. During a track meet, Lisa ran a 1-kilometer race. Linda ran a 400-meter race. How many more meters did Lisa run? (1000m = 1 km)

2. What is the value of 10 times three hundredths?

3. Jamie is 18 years old. If she were 2 years older, she would be 2 times older than her brother Jason. How old is Jason?

4. Tom had 4 cans of soda. He went shopping and bought 3 six-packs of soda. Which expression correctly represents the total number of cans of soda Tom had after he went shopping?

 A. $(4 + 3) \times 6$
 B. $4 + (3 \times 6)$
 C. $4 + (3 + 6)$
 D. $4 \times 3 + 6$
1. Mr. Barrett is putting new baseboard molding around his kitchen floor. He also needs to put baseboard around the base of the island counter in the center of his kitchen. The dimensions of his kitchen are 16 feet by 12 feet. The island counter measures 5 feet by 3 feet. There are 2 doorways, each 3 feet wide. How many feet of baseboard does Mr. Barrett need?

Draw a diagram of the kitchen, label the dimensions, and explain how you determined the number of feet of baseboard needed.
1. Judy wants to buy a computer. The computer she wants to purchase costs $1,999.00. If Judy works at a rate of $7.00 per hour, how many hours will it take her to earn enough money to buy the computer before taxes?

A. 285.57 hours
B. 286 hours
C. 1,992 hours
D. 2,006 hours

2. Jessica placed 10 paper clips on one side of a balance scale. Then she placed 2 marbles on the other side of the scale to make it balance. How many paper clips does she need if she placed 5 marbles on one side of the scale to make it balance?

A. 5
B. 7
C. 20
D. 25

3. Amy has a job sweeping her neighbors’ sidewalks. The table below shows how many days it takes Amy to earn different amounts of money. Complete the pattern in the table to show how much money Amy will earn in six days and seven days.

<table>
<thead>
<tr>
<th>Number of Days worked</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount earned</td>
<td>$2.50</td>
<td>$5.00</td>
<td>$7.50</td>
<td>$10.00</td>
<td>$12.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explain how the amount of money Amy earns changes as the number of days changes.
1. Which pair of coordinates should José plot to make a rectangle?

A. (0,2) and (0,6)
B. (2,4) and (7,4)
C. (0,2) and (6,0)
D. (2,0) and (6,0)

2. Angie and Judith were eating chocolate bars. Judith ate half as many chocolate bars as Angie. Let \(N \) represent the number of chocolate bars Angie ate. Which expression could be used to find the number of chocolate bars Judith ate?

A. \(N + 2 \)
B. \(N \div 2 \)
C. \(N - 2 \)
D. \(2N \)

3. Each year, the city of New Orleans receives an average of 0.5 inch of snow. Which of these models can be used to represent 0.5?

4. Which operations can be used in the boxes below to create the greatest possible result?

\[
\begin{array}{c}
\frac{1}{2} \quad \frac{1}{4} \quad \frac{1}{2} = \\
A. + \quad + \\
B. \times \quad + \\
C. \times \quad \times \\
D. - \quad +
\end{array}
\]
1. At the fifth grade bake sale, Paul bought $\frac{3}{4}$ of the chocolate chip cookies. He ate all that he bought. What percentage of the chocolate chip cookies did Paul NOT buy?

2. When Alex was born, his sister Teri was five years old. Mark, his brother, was two years old. Let T represent the number for Teri’s age. Which of these expressions could correctly be used to find Alex’s age?

 A. $2 + T$
 B. $T + 5$
 C. $T - 2$
 D. $T - 5$

3. A recipe requires $\frac{1}{2}$ stick of butter. Which picture shows how much butter the recipe requires?

 A. [Image A]
 B. [Image B]
 C. [Image C]
 D. [Image D]

4. What metric unit would be the most reasonable to use for measuring the width of your classroom?

 A. millimeter
 B. centimeter
 C. meter
 D. kilometer
1. The area of a rectangle is 300 square feet. The length is three times greater than the width. What is the length and width of the rectangle?
(area = length x width)

A. length, 300 feet and width, 10 feet
B. length, 15 feet and width, 5 feet
C. length, 45 feet and width, 15 feet
D. length, 30 feet and width, 10 feet

2. Ben went shopping for clothes. He bought a shirt for $21.50, shorts for $15.29, and socks for $2.97. He also paid $1.99 in sales tax. Which equation can you use to calculate the change he received from a $100 bill?

A. $21.50 + $15.29 + $2.97 + $1.99 = n
B. $100.00 - $21.50 - $15.29 - $2.97 + $1.99 = n
C. $100.00 - ($21.50 + $15.29 + $2.97 + $1.99) = n
D. $100 - $43.00 = n

3. The distance 4 students in a fifth-grade class travel to school each morning is shown below.

<table>
<thead>
<tr>
<th>Student</th>
<th>Distance (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.5</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Estimate the average distance the students live from the school. Explain how you made you obtained your answer.
1. For a field trip, four vans will carry 17 students to the museum. In each of the first three vans, 5 students will be seated. Which number sentence should you choose to find the number of students that will be seated in the last van?
 A. 5 - 4 = 1
 B. 20 - 17 = 3
 C. 17 - 5 - 5 = 7
 D. 17 - 5 \times 3 = 2

2. Which figure can be folded to form a cube?
 A.
 B.
 C.
 D.

3. The bar graph shows the number of seashells collected on the beach by four students in Mrs. Ortega’s class. The number of shells is represented by the n in the equality, $n < 10$.

 Shell collection

 Which students’ shell collections could be represented by n?
 A. Maria, Albert
 B. Tawan, Betty
 C. Maria, Tawan
 D. Tawan, Albert
1. A living room floor requires 56 square yards of carpeting. The living room is 8 yards wide. How many yards long is it? (Area = length x width)

 A. 7 feet
 B. 7 yards
 C. 7 square feet
 D. 7 square yards

2. In August and October fifth grade students were timed running one mile. Students are expected to run one mile in less than ten minutes. The chart below displays the times of four students in both August and October.

<table>
<thead>
<tr>
<th>Student</th>
<th>August Time</th>
<th>October Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alex</td>
<td>7 minutes 46 seconds</td>
<td>7 minutes 52 seconds</td>
</tr>
<tr>
<td>Jamie</td>
<td>12 minutes 48 seconds</td>
<td>12 minutes 18 seconds</td>
</tr>
<tr>
<td>Kelly</td>
<td>10 minutes 30 seconds</td>
<td>10 minutes 5 seconds</td>
</tr>
<tr>
<td>Tracy</td>
<td>9 minutes 35 seconds</td>
<td>9 minutes 27 seconds</td>
</tr>
</tbody>
</table>

 According to the chart, which student reduced their running time by the greatest amount?

3. A kitchen floor is being covered with new floor tiles.
 • Each new tile has an area of 1 square foot.
 • Altogether, 80 new tiles will be used.
 • The floor is shaped like a rectangle.
 • To find the area of a rectangle, use the formula Area = length x width
 • The length of the floor is 10 feet.

 What is the width of the floor in feet?
1. Leah plans to invite 8 of her friends to her birthday party and would like to give each of her friends and herself the same number of party favors. The party favors Leah can buy are shown below.

Which box of party favors should Leah buy?
A. 15 party favors
B. 25 party favors
C. 40 party favors
D. 45 party favors

2. These figures form a pattern.

Continue the pattern. How many cubes will be required to form a figure 6 cubes tall?
A. 15
B. 13
C. 11
D. 7

3. In Geometry class, Marvin was asked to follow these directions:
1. Draw a horizontal line segment
2. Draw 2 lines perpendicular to the first line segment.
This is what he drew.

Based on the above drawing, what did Marvin do wrong?
1. One dish rack at school has enough slots to hold 10 trays. On Friday, \(\frac{9}{10} \) of the rack is used. What percent of the rack is being used on Friday?

2. In the problem below, choose sensible amounts for the blanks. After playing outside on a hot afternoon, Troy filled a tall glass with ________ of lemonade. If Troy drank three glasses of lemonade altogether, about how much lemonade did he drink? (1000 mL = 1 L)

 A. 10 mL, 3 L
 B. 4 L, 12 L
 C. 15 L, 5 L
 D. 300 mL, 1 L

3. David earns $5.00 every week for helping his dad. He divides his money as follows:

<table>
<thead>
<tr>
<th>David’s Budget</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Savings</td>
<td>$1.50</td>
</tr>
<tr>
<td>Snacks</td>
<td>$1.25</td>
</tr>
<tr>
<td>Video games</td>
<td>$1.25</td>
</tr>
<tr>
<td>Comics or toys</td>
<td>$1.00</td>
</tr>
<tr>
<td>Total</td>
<td>$5.00</td>
</tr>
</tbody>
</table>

 If David earns $15.00, how much will he be able to spend on video games?

 A. $11.50
 B. $1.50
 C. $10.00
 D. $3.75
1. Mrs. Garcia asked the students in her fifth grade class how they got to school each morning. The results are shown below:

<table>
<thead>
<tr>
<th>Students</th>
<th>Method of Travel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuel</td>
<td>Bus</td>
</tr>
<tr>
<td>Mark</td>
<td>Car</td>
</tr>
<tr>
<td>Joseph</td>
<td>Bus</td>
</tr>
<tr>
<td>Mary</td>
<td>Walk</td>
</tr>
<tr>
<td>Alice</td>
<td>Bike</td>
</tr>
<tr>
<td>Sarah</td>
<td>Car</td>
</tr>
<tr>
<td>Cindy</td>
<td>Bus</td>
</tr>
<tr>
<td>Albertina</td>
<td>Bus</td>
</tr>
<tr>
<td>Ruben</td>
<td>Walk</td>
</tr>
<tr>
<td>Jose</td>
<td>Bus</td>
</tr>
<tr>
<td>Kimi</td>
<td>Walk</td>
</tr>
<tr>
<td>Christie</td>
<td>Car</td>
</tr>
<tr>
<td>Raul</td>
<td>Car</td>
</tr>
<tr>
<td>Guadalupe</td>
<td>Bus</td>
</tr>
<tr>
<td>Tavaris</td>
<td>Walk</td>
</tr>
<tr>
<td>Shantavia</td>
<td>Bus</td>
</tr>
<tr>
<td>Monique</td>
<td>Walk</td>
</tr>
<tr>
<td>Steven</td>
<td>Bus</td>
</tr>
<tr>
<td>Beth</td>
<td>Car</td>
</tr>
<tr>
<td>Chris</td>
<td>Bike</td>
</tr>
</tbody>
</table>

Using the gridded sheet, make a bar graph showing the number of students who traveled to school by each method. Be sure to:
- title the graph
- label the axes
- use appropriate and consistent scales
- accurately graph the data

Write two statements comparing how students get to school.
1. Almost 18,000 Cubans immigrated to the United States in 1995. Nearly 80% of the Cubans stayed in Florida. Based on this data, approximately how many Cubans immigrated to states other than Florida in 1995?

2. Susan’s mother went to the bakery to buy 24 cupcakes for her daughter’s birthday party. The cupcakes cost $3.96 a dozen. How much did the cupcakes cost all together?

3. Jessica wants to make a wooden picture frame to hold a painting she has done. The picture frame will be 80 cm by 50 cm. It costs $0.25 for each centimeter of framing. How much will it cost to frame Jessica’s painting?

4. Crickets chirp more as the temperature gets higher. Suppose that at 40 degrees Fahrenheit a cricket chirps 5 times, at 43 degrees it chirps 10 times, and at 46 degrees it chirps 15 times. If the pattern continues, how many times will the cricket chirp when the temperature reaches 55 degrees?
1. During summer vacation Sam is planning to sell lemonade each Saturday for 12 Saturdays. The supplies he needs to buy each Saturday cost $9.75.

Sam wants to estimate if $100.00 is enough money to buy all of his supplies. Explain how Sam could estimate if he has enough money.

2. Two points are shown on this coordinate grid.

![Coordinate Grid]

Using the two points shown, which additional pairs of coordinates should be plotted to form a trapezoid?

A. (3,5) and (4,4)
B. (0,4) and (0,2)
C. (5,2) and (6,4)
D. (2,1) and (3,4)

3. Tabitha wants to call her cousin, Ayla, in Los Angeles to wish her a happy birthday, but there is a three-hour time difference. Tabitha made her call at 2:42 P.M. If it is earlier in Los Angeles, what time was it when Ayly answered the telephone?

A. 11:42 P.M. B. 11:42 A.M. C. 12:42 P.M. D. 5:42 P.M.
1. Howard and five of his friends went to the movies. A ticket costs $5.75. Howard paid for all the tickets. Which equation can you use to calculate the change he received from a $50 bill?

A. $50.00 - 5($5.75) = n
B. $50.00 - 6($5.75) = n
C. 6($5.75) - $50.00 = n
D. 5($5.75) - $50.00 = n

2. What letter represents the number $\frac{3}{4}$?

3. Find the value of y in the following expression:

$\left(\frac{24}{y}\right) - \left(\frac{12}{y}\right) = 3$

4. Keneesha scored 90, 80, 70, 60, and 50 on her presidents’ tests. What was her mean score?
1. Gas costs $1.13 per gallon. Sabrina has $10.00. How many full gallons of gas can Sabrina purchase?
 A. 11
 B. 10
 C. 9
 D. 8

2. What one-digit divisor would result in a 3-digit quotient whose digits are all the same?
 \[
 \frac{?}{1,665}
 \]

3. Find the value of \(x \) in the following expression:
 \[(12 ÷ x) \times (12 ÷ x) = 36\]

4. One-half of a figure is shown below. The dotted line represents a line of symmetry.

 ![Figure](image)

 What would be the area of the figure if the missing portion of the figure was drawn?
 A. 9 square units
 B. 10 square units
 C. 18 square units
 D. 20 square units
1. Triangles are arranged in the following pattern:

\[\triangle \quad \triangle \quad \triangle \quad \triangle \quad \triangle \]

Copy and complete the chart.

How many triangles altogether would be needed to have a perimeter of 10?

2. Emilio estimates 600 trucks pass his town on the highway every day. About how many trucks would go by in a month? (1 month = 30 days)

3. If you divide the number of dimes in $20.00 by the number of nickels in a quarter, what is the quotient?
1. James ate 39 cherries. If he would have eaten one more cherry, he would have eaten twice as many as Jackie. How many cherries did Jackie eat?

2. What operations belong in the boxes to create the smallest number?
 \[6 \, \underline{} \, 3 \, \underline{} \, 7 \]
 A. + and +
 B. + and -
 C. x and -
 D. ÷ and x

3. Kim needs to know the area of her living room floor to order new carpet. The width is 9.2 meters and the length is 10 meters. What is the area? (Area = length x width)
 A. 92 meters
 B. 92 square meters
 C. 920 meters
 D. 10.2 meters

4. The distance between New York and Chicago is:
 A. 1300 kg
 B. 1300 m
 C. 1300 km
 D. 13,000 km
1. Chase earned the following scores on his math tests: 100, 95, 85, 80, 80. What was the mode of Chase’s math test scores?

A. 88
B. 85
C. 80
D. 20

2. The chart below lists the planets in our Solar System. It also gives the number of miles each planet is from the sun.

<table>
<thead>
<tr>
<th>Planets</th>
<th>Distance from the sun (in miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturn</td>
<td>887 million</td>
</tr>
<tr>
<td>Earth</td>
<td>93 million</td>
</tr>
<tr>
<td>Mercury</td>
<td>36 million</td>
</tr>
<tr>
<td>Neptune</td>
<td>2.8 billion</td>
</tr>
<tr>
<td>Mars</td>
<td>142 million</td>
</tr>
<tr>
<td>Uranus</td>
<td>1.8 billion</td>
</tr>
<tr>
<td>Jupiter</td>
<td>484 million</td>
</tr>
<tr>
<td>Venus</td>
<td>67 million</td>
</tr>
<tr>
<td>Pluto</td>
<td>3.7 billion</td>
</tr>
</tbody>
</table>

Based on the above information, which planet is the median distance from the sun?

A. Mars
B. Jupiter
C. Saturn
D. Neptune

3. Ann is 6 years older than Bruce. Seven years from now she will be 21. How old is Bruce now? Explain how you determined your answer.
1. A bag of apples and 1 orange weigh the same as 10 oranges. If one orange weighs 6 ounces, how much does the bag of apples weigh?

2. The graph below shows the population growth in Virginia during the 1600’s until the 1700’s. This growth was due to the introduction of tobacco and slavery to Virginia.

 Population of Virginia, 1610-1700

 Which of the following statements is true?

 A. The population is increasing.
 B. The population is decreasing.
 C. The population is staying the same.
 D. In 1650, 20 settlers lived in Virginia.

3. Dion is preparing to run a 5-kilometer race to help raise money for the homeless. She has already run 2500 meters. How many kilometers did she run so far? (1000m = 1 km)

4. Renaldo hiked and swam a total of 12 hours. He hiked twice as long as he swam. How long did he hike?
1. Thelma purchased 25 gallons of gas. She paid $26.50. How much did Thelma pay for each gallon?

2. A bakery is selling packages of cupcakes. Some packages have 2 cupcakes, some have 3 cupcakes. There are 17 packages containing a total of 42 cupcakes. How many packages have 2 cupcakes and how many have 3 cupcakes?

3. Which figure represents a slide?

 A.
 B.
 C.
 D.

4. Draw a flip of the following shape across the dotted line.

Grade 5 • Mathematics Review Day 39 (extended response)

1. At a neighborhood picnic a group of adults offered to take the young people to the circus. Mrs. Leigh agreed to pick up the tickets after everyone planning to go had signed up. The list is below:

CIRCUS SIGN UP SHEET

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Name</th>
<th>Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grandma Jones</td>
<td>72</td>
<td>Rev. Hansard</td>
<td>54</td>
</tr>
<tr>
<td>Ms. Jones</td>
<td>28</td>
<td>Maria</td>
<td>7</td>
</tr>
<tr>
<td>Jessica</td>
<td>6</td>
<td>Sophia</td>
<td>15</td>
</tr>
<tr>
<td>Jane</td>
<td>4</td>
<td>Ari</td>
<td>8</td>
</tr>
<tr>
<td>Joan</td>
<td>4</td>
<td>Bob Kahn</td>
<td>67</td>
</tr>
<tr>
<td>Roberto</td>
<td>8</td>
<td>Lillie Kahn</td>
<td>52</td>
</tr>
<tr>
<td>Hosea</td>
<td>10</td>
<td>Jackie</td>
<td>17</td>
</tr>
<tr>
<td>Mr. Leigh</td>
<td>47</td>
<td>Sally</td>
<td>13</td>
</tr>
<tr>
<td>Mrs. Leigh</td>
<td>42</td>
<td>Juan</td>
<td>10</td>
</tr>
<tr>
<td>Susie</td>
<td>6</td>
<td>Louis</td>
<td>15</td>
</tr>
<tr>
<td>James</td>
<td>17</td>
<td>Tia</td>
<td>12</td>
</tr>
<tr>
<td>Jon</td>
<td>24</td>
<td>Dr. Coberra</td>
<td>33</td>
</tr>
</tbody>
</table>

2. Count the number of people in each age bracket and write the number in the chart below.

<table>
<thead>
<tr>
<th>Age bracket</th>
<th>Number of Tickets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior Citizens</td>
<td></td>
</tr>
<tr>
<td>(55 and older)</td>
<td></td>
</tr>
<tr>
<td>Adults</td>
<td></td>
</tr>
<tr>
<td>(19-54)</td>
<td></td>
</tr>
<tr>
<td>Students</td>
<td></td>
</tr>
<tr>
<td>(13-18)</td>
<td></td>
</tr>
<tr>
<td>Children</td>
<td></td>
</tr>
<tr>
<td>(5-12)</td>
<td></td>
</tr>
<tr>
<td>Preschool</td>
<td></td>
</tr>
<tr>
<td>0-4</td>
<td></td>
</tr>
</tbody>
</table>

Using the gridded sheet, make a bar graph showing the tickets purchased for each age bracket. Be sure to:

- title the graph.
- label the axes.
- use appropriate and consistent scales.
- accurately graph the data.

Write two statements comparing the number of tickets sold in each age bracket.
1. A jar of mayonnaise holds 48 fluid ounces. How many pints does it hold?
(16 ounces = 1 pint)

2. When Carol went to the store to buy 3 gallons of milk, the store only had quarts of milk. How many quarts of milk did she need to purchase to equal 3 gallons?
(4 quarts = 1 gallon)

3. John was going to purchase items at the office supply store. The original cost of the items totaled $20. However, each item was 1/4 off. How much money did John save?
A. $80
B. $15
C. $10
D. $5

4. José is planting a garden in his backyard. He wants half of the garden to be vegetables. He also wants 1/3 of the vegetable area to be broccoli. How much of the garden has broccoli?
__________________of the garden is broccoli.
1. On one side of a balance scale, Tina placed a 10-gram weight. On the other side of the scale, she placed 4 paper clips. Each paper clip is the same weight.

How much does one paper clip weigh?
A. 40 g
B. 2.5 g
C. 2 g
D. 1.6 g

2. Which student has the median test score?

<table>
<thead>
<tr>
<th>Student</th>
<th>Test Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jane</td>
<td>100, 65, 100, 55, 60</td>
</tr>
<tr>
<td>Mary</td>
<td>95, 40, 90, 85, 40</td>
</tr>
<tr>
<td>Sarah</td>
<td>80, 80, 80, 80, 80</td>
</tr>
<tr>
<td>Kim</td>
<td>70, 95, 70, 70, 95</td>
</tr>
</tbody>
</table>

A. Mary
B. Jane
C. Sarah
D. Kim

3. Louis Comfort Tiffany was famous for his glass work. He is best known for the stained glass lamp shades he designed. Below is a top view of a lampshade. Draw a line on the picture that demonstrates symmetry.

Explain why your line demonstrates symmetry.
1. A chocolate cake recipe calls for \(1\frac{1}{4}\) cups of sugar, \(2\frac{1}{2}\) cups of flour, and \(\frac{3}{4}\) cup of chocolate chips. How many cups of ingredients will be used altogether?

2. Fred gave Georgia half of his football cards. Georgia wanted to share hers equally with her best friend Joe. What portion of Fred’s original pack did Joe get?

 A. \(\frac{1}{4}\)
 B. \(\frac{1}{2}\)
 C. \(.5\)
 D. \(\frac{3}{4}\)

3. On one side of a balance scale, Juan placed a 9-gram weight. On the other side of the scale, he placed 6 dimes. The scale was balanced. Each dime is the same weight. How much does one dime weigh?

 A. 15 grams
 B. 3 grams
 C. 1.5 grams
 D. 2 grams

4. Look for a pattern in the following table.

<table>
<thead>
<tr>
<th>A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
</tr>
</tbody>
</table>

Write a numerical expression that generalizes the pattern.
1. Which of the following is true about a proper fraction whose denominator is 13?

A. It is in lowest terms.
B. It is equivalent to $\frac{1}{3}$.
C. It is equivalent to $\frac{1}{2}$.
D. Its numerator can only be an odd number.

2. Which two numbers have 6 as the greatest common factor?

A. 12 and 18
B. 2 and 4
C. 20 and 24
D. 12 and 24

3. The average body temperature of a dog is 102°F. The average human body temperature is 98.6°F. What is the difference in the temperatures?

4. The Acme Fence Company is putting a metal fence around the Fort Clayton Army Barracks lot. There will be one 10 foot opening with wooden guard rails. If the length of the lot is 45 feet and the width is 40 feet, how much metal fencing is needed?
1. If your divisor is 63, what is the greatest possible remainder you could have in any division problem?

A. 62
B. 60
C. 10
D. 3

2. A baker uses 4 cups of white flour and \(n \) cups of wheat flour. Write an expression for the total number of cups used.

A. \(n - 4 \)
B. \(n + 4 \)
C. \(4 - n \)
D. \(4n \)

3. Aaron is three times as old as Eugene. The sum of their ages times 2 equals 24. What is Aaron’s age?

4. Antonio rotated the figure below 180° and then flipped it over the broken line.

Which of the following shows the figure after the 180° rotation and flip?

A.
B.
C.
D.

1. In a garden, there are 6 rows of plants. The back row has 50 plants. The next row has 47 plants. The fourth row has 43 plants. The third row has 38 plants.

If the pattern continues, how many plants will be in the first row. Explain why.

2. A grocery store recently opened in the area. All items on the end of the aisles were marked $.50. My family bought only these items and we spent $46.50. There was no tax on these grocery items. How many of these items did we buy?

A. 39
B. 93
C. 46
D. 465

3. José plotted points D, E on the coordinate grid below:

Which of these pairs of coordinates should José plot to make a square?

A. (3,6) and (6,3)
B. (4,3) and (7,3)
C. (5,4) and (2,4)
D. (4,5) and (4,2)
The fourth grade students at Egret Elementary voted for their favorite sport. The double bar graph shows the results of the vote.

1. How many more boys voted for baseball than hockey?
 A. 5
 B. 10
 C. 20
 D. 25

2. Did more boys or girls like hockey the most?

3. How many boys and girls participated in the survey?

4. Were there more boys or girls in the survey?
1. Minerals are the most common solid materials found on Earth. There are 2,000 kinds of minerals, but only about 100 of them are common. What part of the minerals are common? Express your answer in decimal form.

2. A kitchen floor requires 18 square yards of vinyl. The kitchen is 3 yards wide. How many yards long is it? (Area = length x width)
 A. 6 yards
 B. 6 feet
 C. 6 square yards
 D. 6 square feet

3. These figures form a pattern.

 Continue this pattern. How many cubes high will a figure be that is 8 cubes long?
 A. 6 B. 7 C. 8 D. 9

4. Two points are shown on this coordinate grid.

 Which of these pairs of coordinates can be plotted to form a parallelogram?
 A. (6,2) and (8,4) B. (5,2) and (8,5)
 C. (2,3) and (4,8) D. (2,5) and (5,8)
1. The weight of an automobile is 3,048 lbs. How many pounds more than 1 ton does the automobile weigh? (2,000 pounds = 1 ton)

2. Lance colored 40% of the squares blue. Which fraction best represents the number of blue squares?

 A. $\frac{1}{4}$
 B. $\frac{2}{5}$
 C. $\frac{1}{20}$
 D. $\frac{4}{100}$

3. Circle the figure that has a line of symmetry.

 Figure A

 Figure B

 Explain why the figure you circled has a line of symmetry.
1. Look for a pattern in the following table.

<table>
<thead>
<tr>
<th>A</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

Write a numerical expression that generalizes the pattern.

2. In the problem below, choose a sensible amount from the list and write the amount in the blank. Solve the problem and write your answer in the second blank. Then mark your answer.

2 mL 2 L 20 L 200 mL 100 L

The weather turned cold overnight. Annie asked her mother to fix a pot of hot chocolate. Annie’s mom poured her a cup with _________ of hot chocolate. If Annie drank five cups of hot chocolate altogether, about how much hot chocolate did she drink?

A. 2 L, 10 L
B. 2 mL, 1 L
C. 200 mL, 1 L
D. 200 mL, 2 L

3. During the month of November, \(\frac{1}{6} \) of the days were cold. Which number sentence could be used to find \(n \), the number of cold days during November?

A. 30 x \(\frac{1}{6} \) = \(n \)
B. \(30 \div \frac{1}{6} \) = \(n \)
C. 30 x 6 = \(n \)
D. 30 - 6 = \(n \)

4. Which set of numbers is ordered from least to greatest?

A. 10.1 10.34 9.9 9.57
B. 11.45 16.0 16.75 17
C. 0.34 0.3 0.45 0.58
D. 24.4 25 25.85 25.63
Mayfair Elementary School is planning a field day. The P.E. teachers want all of the activities that involve water to be sectioned off. The perimeter of the water area is 40 meters.

Using the diagram of the field below, create the largest possible section you can make using a 40-meter ribbon. Label it “Water Sector C.”

- What is the area of the water section?
- What is the area of the field that is left for other games? (Area = length x width)
- In the space remaining on the field grid, create sections of equal size for each of the three remaining field day stations. Label them with the numbers 1, 2, and 3.
1. Choose the most reasonable unit of mass to weigh a pencil, ruler, or an eraser.

 A. grams
 B. liter
 C. milligrams
 D. kilograms

2. Which set of numbers is ordered from greatest to least?

 A. 4.052 3.74 3.951 2.3
 B. 6.04 6.805 7 7.1
 C. 10.397 8.41 8.009 6
 D. 23.07 27.616 .131 15.22

Using the data in the graph, estimate the population in 1935. Explain your answer.
1. Sara ran 2.14 miles. John ran 1.9 miles. Juan ran 3.2 miles. How many total miles did the three students run?

2. This spinner is divided into 5 equal parts.

Suppose the spinner is spun once. Which statement shown below is true?
A. One is the most likely outcome.
B. Two is the most likely outcome
C. Three is the most likely outcome.
D. Each outcome shown on the spinner is equally likely.

3. A rectangle has a perimeter of 30 inches. The length is twice as long as the width. Which of these expressions could correctly be used to find the length?
A. \(L \times W = A\)
B. \(2w + 2w + w + w = 30\)
C. \(P = s + s + s + s\)
D. \(2 \times L = w\)

4. Choose the most reasonable unit of mass to weigh a paper clip, a stamp, or a grain of rice.
A. tons
B. pounds
C. milligrams
D. kilograms
1. For which student does the median, rather than the mean or mode give the highest points scored in a basketball game?

<table>
<thead>
<tr>
<th>Student</th>
<th>Points Scored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jose</td>
<td>20, 30, 32, 20, 31</td>
</tr>
<tr>
<td>Bill</td>
<td>21, 10, 20, 10, 10</td>
</tr>
<tr>
<td>Rob</td>
<td>6, 15, 6, 15, 6</td>
</tr>
<tr>
<td>Ivan</td>
<td>20, 2, 20, 2, 2</td>
</tr>
</tbody>
</table>

A. Jose
B. Bill
C. Rob
D. Ivan

2. The volume of this rectangular prism is 80 cubic meters. What is the height of the prism?
(Volume = length x width x height)

A. 2 m
B. 4 m
C. 6 m
D. 8 m

3. Gerald had some peanuts. He divided them into 4 groups. Each group contained 20 peanuts. Which expression could be used to find the number of peanuts Gerald has altogether?

A. $20 \div 4 = N$
B. $4 \times N = 20$
C. $4 = 20$
D. $N = 20 \div 4$

4. Robbie is twice as old as Kenneth. In 2 years Kenneth will be twice as old as Jamie is now. Robbie is 20. How old is Jamie?
1. Leweldon wants to carpet his family room that has a length of 14.9 feet and a width of 10.4 feet. APPROXIMATELY how much carpet will Leweldon need?

 A. 155 square feet
 B. 140 square feet
 C. 50 square feet
 D. 25 square feet

2. How many cubes would be required to make this model?

 = 1 unit cube

 A. 2
 B. 4
 C. 6
 D. 8

3. Three friends—Alex, Bob, and Clarence—are competing against each other in a spelling bee. In the space below, list all of the different ways the friends could finish first, second, or third in the spelling bee. You may use the first letter of each friend’s name in you list (for example-ABC)
1. Ann is 10 years old. If she were 4 years older, she would be twice as old as her sister, Margie. How old is Margie?

2. The table below shows the input and output of various numbers.

<table>
<thead>
<tr>
<th>Input</th>
<th>2.1</th>
<th>5.2</th>
<th>6.2</th>
<th>7.5</th>
<th>8.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>6.3</td>
<td>15.6</td>
<td>18.6</td>
<td>22.5</td>
<td>?</td>
</tr>
</tbody>
</table>

Look for the rule. What number completes the table?
A. 83.0
B. 24.0
C. 8.3
D. 3.0

3. A metal cylinder has a capacity of 4000mL. How much coffee can it hold?
(1L = 1000 mL)
A. 487 L
B. 50 L
C. 48,675 mL
D. 4L

4. Draw a shape that is a reflection of the square across the dotted line.
1. The volume of this rectangular prism is 72 cubic meters. What is its height?
 \((\text{Volume} = L \times W \times H)\)

 \[
 \begin{array}{c}
 \text{A. 6 m} \\
 \text{B. 8 m} \\
 \text{C. 12 m} \\
 \text{D. 18 m}
 \end{array}
 \]

2. Solve for the value of \(n\) in these basic fact patterns.

 \[
 \begin{array}{c}
 90 \div 30 = n \quad n = \underline{} \\
 900 \div 30 = n \quad n = \underline{} \\
 9,000 \div 30 = n \quad n = \underline{ }
 \end{array}
 \]

 Explain how you can use mental math to find each quotient.

3. Mrs. Gilbert distributed a rock collection to each group in her class. Each group had to sort its collection according to the Moh’s Scale of hardness. Frank’s group sorted its rocks as follows: 3 calcite, 1 gypsum, 6 quartz, and 2 talc. If Frank put the rocks in a closed paper bag and picked one, which rock type would he be most likely to pick from the bag?

 \[
 \begin{array}{c}
 \text{A. calcite} \\
 \text{B. gypsum} \\
 \text{C. quartz} \\
 \text{D. talc}
 \end{array}
 \]
1. Write seven-tenths as a decimal.

2. Mia wants to give all 21 people in her class $1\frac{1}{3}$ yards of red ribbon to make a bow. How many yards of ribbon does Mia need to buy?

3. Ruthie purchased 6 packages of modeling clay and 2 packages of beads. Each package cost $2.89. What amount of money did Ruthie spend?

4. Donna read 43 books at the school’s reading competition championship. If Donna read one more book, the number of books she read this year would have been double the number of books she read last year. How many books did Donna read last year?
1. A research scientist has 100 grams of carbon and 1 kilogram of tin. How many kilograms of the material does he have? (1000 grams = 1 kilogram)

A. 1.1 kg
B. 2.01 kg
C. 101 kg
D. 1100 kg

2. Dr. Vargas is recommending a patient take 2 mL of medicine twice a day for 10 days. How many mL of medicine must the patient take altogether?

A. 1 liter
B. 40 mL
C. 20 mL
D. 12 mL

3. Rasheed has 3,975 books to distribute to classrooms. If there are 25 classrooms, how many books go to each room?

4. Tanya has $2,986 in her bank account. She must keep $2,000 in the account at all times, but she also wants to buy a computer that costs $1,700. How much more money does she need to save?

A. $4,986
B. $986
C. $714
D. $300
1. On the first Saturday in December, each of 12 members of a fifth grade class worked 3.5 hours wrapping presents at the mall. Their teacher, Ms. Monroe worked 4 hours.

\[12 \quad 3.5 \quad 4 \]

Which operations could be used in the boxes above to find the total number of hours that were worked?

A. \(x \) and +
B. \(+ \) and +
C. \(x \) and \(x \)
D. \(+ \) and -

2. Mrs. Dole’s fifth grade class took a spelling test every Friday. The class has 36 students. The first week 6 students received 100%. The second week 12 students received 100%. The third week 18 students received 100%. Assuming the pattern continues, what is the total number of weeks it took the entire class to receive 100% on the spelling test?

3.

<table>
<thead>
<tr>
<th>Week</th>
<th>Number of students receiving a 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
</tr>
</tbody>
</table>

4. One day in January the temperature in Singapore was 4.3 degrees hotter than 10 times the temperature in Moscow. The temperature in Moscow was 2.32\(^\circ\) C. What was the temperature in Singapore?

5. Lakeisha wants to put a border around her bedroom. The dimensions of her bedroom are 10 ft. by 12 ft. Lakeisha has 14 yds. of border. How much more border will Lakeisha need?
1. Mark is going to buy a carpet for his square room. He wants to leave a foot space between the edges of the carpet and the walls.

Part A. Find both the area of the room and the area of the carpet in square feet.

Part B. What is the area of the space between the wall and the carpet that Mark will have to clean? Explain how you obtained your answer.
1. How many unit cubes would be required to make this model?

A. 18
B. 19
C. 23
D. 27

2. A class recently held a student council election. Gary, Justin, and Rainelle were chosen to represent their class in the election; 24 students voted. Justin won by three votes, and the other two candidates tied. How many votes did Justin get?
A. 5 votes
B. 7 votes
C. 8 votes
D. 10 votes

3. The following circle graph shows the “Kent family” monthly budget.

The Kents spend about $1200 on rent and food combined. ESTIMATE their total monthly budget. Explain how you got your answer.

Total budget estimate: ____________
1. Frank has $\frac{21}{4}$ candy bars. He wants to share his candy bar with 2 of his friends. How much of the candy bars will Frank and his friends get?

2. Millie and Jose have put 6 quarts of water into a fish tank. The tank has a capacity of 4 gallons. How many more quarts of water do they need to fill the tank? (4 quarts = 1 gallon)
 A. 24 quarts
 B. 12 quarts
 C. 10 quarts
 D. 2 gallons

3. In May, the city of Phoenix receives an average of 0.1 inch of rain. Which of these models can be used to represent 0.1?

4. Marta is arranging her father’s wrenches in the tool chest from the smallest size to the largest size. In which order should the wrenches be placed?
 A. $\frac{1}{4}, \frac{1}{8}, \frac{5}{8}$
 B. $\frac{1}{8}, \frac{5}{8}, \frac{1}{4}$
 C. $\frac{1}{8}, \frac{1}{4}, \frac{5}{8}$
 D. $\frac{5}{8}, \frac{1}{8}, \frac{1}{4}$
1. Write five less than eight.
 A. 5 - 8
 B. 5 < 8
 C. 8 - 5
 D. 8 < 5

2. Write each number in standard form:
 • Two hundred ninety-five thousand, eight hundred four =

 • 70,000 + 600 + 10 + 9 =

3. Each morning, 3 fifth grade students walk to school. The walking distance of each student is shown below.

<table>
<thead>
<tr>
<th>Student</th>
<th>Distance (miles)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.7</td>
</tr>
<tr>
<td>B</td>
<td>2.1</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
</tr>
</tbody>
</table>

Altogether, there are 10 students in the class who walk to school. ESTIMATE the total number of miles 20 students walk to school each morning.
1. Find the value of n, q, and s in each number sentence.

\[2.14 \times n = 21.4\]
\[2.14 \times q = 214\]
\[2.14 \times s = 2140\]

2. Write a fraction, decimal, and a percent that tells what part is shaded.

![Shaded Circle](image)

3. In the space below, draw 3 different quadrilaterals.

![Dotted Grid](image)

Tell why the figures you drew are quadrilaterals.
1. Sarah is on a committee that is in charge of planning the games for her school’s carnival. Before the carnival, her committee conducted a survey to find out which games students liked best. The results are shown in tallies in the chart below, with each tally mark equaling one person.

<table>
<thead>
<tr>
<th>Choices</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pop the Balloons</td>
<td>□□□□□□□□□□</td>
</tr>
<tr>
<td>Flip the Coins</td>
<td>□□□□□□□□□□</td>
</tr>
<tr>
<td>Guess my Height</td>
<td>□□□□□□□□□□</td>
</tr>
<tr>
<td>3-Legged Race</td>
<td>□□□□□□□□□□</td>
</tr>
<tr>
<td>Basketball Throw</td>
<td>□□□□□□□□□□</td>
</tr>
</tbody>
</table>

Construct a bar graph in the grid below that represents the survey results.
Be sure to:
- title the graph
- label the axes
- use appropriate and consistent scales
- accurately graph the data

Using the information from the bar graph, write two statements that compare the students’ favorite carnival games.
1. While cooking, Marie used these amounts of milk.

\[
\frac{1}{4} \text{ cup} \quad \frac{1}{4} \text{ cup} \quad \frac{1}{4} \text{ cup}
\]

How much milk did she use altogether?

A. \(1\frac{1}{2}\) cups
B. \(1\frac{1}{4}\) cups
C. \(\frac{3}{12}\) cup
D. \(\frac{3}{4}\) cup

2. Which is the best unit of measure for the distance you would run in a marathon?

A. centimeter
B. decimeter
C. feet
D. kilometer

3. The following table shows how fast a hummingbird’s wings move when the bird hovers in the air. Complete the pattern in the table to show how many wing beats a hummingbird completes in 6 seconds.

<table>
<thead>
<tr>
<th>Number of Seconds</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Wing beats</td>
<td>70</td>
<td>140</td>
<td>210</td>
<td>280</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explain how the number of wing beats for a hummingbird change as the number of seconds’ changes.
1. What is the value of 10 times two hundredths?

2. The length of the rectangular floor of a cafeteria is five times as long as its width. The area of the floor is 500 square feet. What is the width of the floor in feet? (area = length x width)

3. In Ms. Baird’s class, \(\frac{1}{4}\) of the students are in chorus. What percent of the students are in chorus?

4. The table below shows the distances Joe, Juan, Frank, Yasheka, and Barbara live from school.

<table>
<thead>
<tr>
<th>Student</th>
<th>Distance from School</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe</td>
<td>0.90 kilometers</td>
</tr>
<tr>
<td>Juan</td>
<td>1.90 kilometers</td>
</tr>
<tr>
<td>Yasheka</td>
<td>1.09 kilometers</td>
</tr>
<tr>
<td>Barbara</td>
<td>0.07 kilometers</td>
</tr>
</tbody>
</table>

How far away from school is the home of the student who lives NEAREST the school?
Kathy and John sorted shapes into groups.

Kathy’s Choices	John’s Choices
[Rectangle image] | [Triangle image]
[Octagon image] | [Line image]
[Star image] | [Octagon image]

1. What geometric characteristic determined Kathy’s choices?

2. What geometric characteristic determined John’s choices?

3. What number completes the chart?

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>?</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Explain how you found your answer.
1. Which expression does NOT equal a multiple of 12?
 A. \(3 \times 4 \times 5\)
 B. \(2 \times 2 \times 2 \times 3\)
 C. \(2 \times 11\)
 D. \(2 \times 12\)

2. Which operations can be used in the boxes below to create the greatest possible result?

 \[
 \frac{12}{3} \quad \square \quad \frac{1}{6} \quad \square \quad \frac{1}{3}
 \]

 A. + and +
 B. × and +
 C. × and ×
 D. - and -

3. Write a percent that is less than \(\frac{20}{100}\). The sum of its digits is 9.

4. Write a percent that is greater than \(\frac{25}{100}\).
 The sum of its digits is 1.
The students in Mrs. Gordon’s class conducted a survey to find out the students’ favorite flavor of Juicy Juice Candy. They surveyed 40 students and recorded their results on the table below. Each tally mark equals one person. Complete the table, then use the data to make a circle graph to display the results of their survey.

<table>
<thead>
<tr>
<th>Flavor</th>
<th>Student Response</th>
<th>Number of Students</th>
<th>Fraction</th>
<th>Decimal</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grape</td>
<td>I I I I I I I I I I</td>
<td>2</td>
<td>$\frac{2}{40}$ or $\frac{1}{20}$</td>
<td>0.05</td>
<td>5%</td>
</tr>
<tr>
<td>Lime</td>
<td>I I I I I I I I I I I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orange</td>
<td>I I I I I I I I I I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strawberry</td>
<td>I I I I I I I I I I I I I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Be sure to:
- title the graph.
- label each section.
- show the percentages.
1. Which measurement best describes the weight of a cereal box?
 A. 2 meters
 B. 2 liters
 C. 2 grams
 D. 2 kilograms

2. Tanya has a pet service. She estimates that it takes more than 25 minutes but less than 30 minutes to walk a dog.

 About how many dogs can she walk in $2\frac{1}{2}$ hours?
 (60 minutes = 1 hour)
 A. 3
 B. 4
 C. 5
 D. 14

3. North Ridge Elementary School was participating in a marathon to raise money for new playground equipment. Four of the children in Mrs. Garcia’s class finished the race. The following chart shows how long it took each child to complete the race.

<table>
<thead>
<tr>
<th>Student</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carmella</td>
<td>1.7 hours</td>
</tr>
<tr>
<td>Donnie</td>
<td>$1\frac{4}{10}$ hours</td>
</tr>
<tr>
<td>Jake</td>
<td>2.2 hours</td>
</tr>
<tr>
<td>Ashton</td>
<td>$1\frac{3}{10}$ hours</td>
</tr>
</tbody>
</table>

List the students in the order they finished. Explain how you determined you answer.
1. The rectangles shown below are congruent. If you turned each of them in a different direction, would they still be congruent? Tell why or why not.

![Rectangles](image.png)

2. Rachel went trick-or-treating. After she arrived home and her parents had checked her candy, she decided to make different color combinations with the chocolate bar wrappers. She took a red sour ball, a blue sour ball, and a green sour ball and combined each one with a Yum wrapper, or a Choco wrapper, or a Nutty wrapper. In the space below, draw a tree diagram to show all the different combinations of a sourball and a chocolate wrapper that Rachel could make.
1. In a garden, there are 6 rows of plants. The back row has 29 plants. The next row has 27 plants. The fourth row has 24 plants. The third row has 20 plants.

If the pattern continues, how many plants will be in the first row? Explain why.

2. Sled dog racing is a popular sport in Alaska. The most famous annual dog sled race is the 1,200-mile Iditarod, from Anchorage to Nome. If one of the drivers completed only 300 miles of this race, find the percentage completed of the total race.

3. Tommy ate 2 slices of pie and left the other 8 slices for his friends. What percentage of the pie did Tommy eat?
1. You want to measure how fast a student can run a mile. What instrument would you use?

 A. scale
 B. yard stick
 C. stop watch
 D. thermometer

2. What shape can **not** be used by itself to form a tessellation?

 A. square
 B. equilateral triangle
 C. rectangle
 D. circle

3. One of Josh’s hobbies is bird watching. The number of birds he saw for five days last week is displayed by the bar graph.

 Josh also watched birds on Saturday and Sunday. Use the bar graph data to predict the number of birds he saw those days. Then use the space below to explain your answer.
1. Ryan and Christina divided their play area in school. During playtime, they will play in each area. Look at the play area they divided below.

Part A. Find the square feet in the music area and game area.

Part B. Find the square feet in the dress-up area and reading area.

Part C. Does Part A or Part B contain more square feet?
1. Mark is making decorations. Each decoration requires 1 yard of ribbon. If he has 23 feet of ribbon, how many decorations can he make? (3 feet = 1 yard)

 A. 20
 B. 8
 C. 7
 D. 3

2. The small measuring cup can hold \(\frac{1}{2} \) cup of water. The large container can hold 2 cups of water.

 Alex needs to fill the large container with exactly 2 cups of water. How many times will he have to fill the small measuring cup and empty it into the large container?

 A. 2
 B. 4
 C. 8
 D. \(\frac{2}{2} \)

3. Draw a circle around each capital letter that has more than one line of symmetry.

 O H V X E

 Explain why all of the letters that you have circled have more than one line of symmetry.
1. Draw a right triangle.

2. 14, 13, 16, 15, 18, 17, ________, _________, __________

 In the above pattern, what number would go in the third blank?
 A. 19
 B. 20
 C. 21
 D. 22

3. Scientists studied the diet of a group of people who lived on an island. Here is a list of the food groups and the percentage of the total diet made up of each food group.

 Grains 17%
 Fruits 28%
 Fish 47%
 Dairy products __________%

 What percent of the total diet are dairy products?
1. Choose the operations that would make this number sentence true.

\[30 \quad \square \quad 15 \quad \square \quad 5 = 9 \]

A. + and -
B. + and ÷
C. x and ÷
D. ÷ and +

2. On the rectangle below, draw ALL of the lines of symmetry.

```
  _______
 /       \
 |       |  
  \\    |   
    |  |  
    |   |  
    |    |  
    |     |  
    |      |  
    |       |  
  \_______\ 
```

3. The graph below shows how loudly and how long Bob played his television yesterday evening.

Bob’s brother asked him to turn the television down. Find the time Bob turned down the television. Explain how you found your answer.
1. What is the value of \(4 \times 10 \times 10 \times 10\)?

 A. 40
 B. 400
 C. 4,000
 D. 40,000

2. Use a ruler to measure the given line to the nearest whole centimeter.

 A. 1 cm
 B. 3 cm
 C. 5 cm
 D. 7 cm

3. Each year, students get to vote on their choice of the Sunshine State Readers. The counties within the state have a “Book Battle” to see which students remember the facts from the books the best. Three schools are competing for the championship. We will call them School A, School B, and School C. Use the space below to show the possible ways that the schools could win 1st, 2nd or 3rd place.
The students in Ms. Smith’s classroom voted for their favorite books. The results are shown in the table below.

<table>
<thead>
<tr>
<th>Books</th>
<th>Number of Students Voting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stories of Wayside School</td>
<td>6</td>
</tr>
<tr>
<td>The Hobbit</td>
<td>5</td>
</tr>
<tr>
<td>The Lion, the Witch, and the Wardrobe</td>
<td>8</td>
</tr>
<tr>
<td>Hatchet</td>
<td>5</td>
</tr>
<tr>
<td>The Indian in the Cupboard</td>
<td>6</td>
</tr>
</tbody>
</table>

Use the information from the table to make a bar graph on the grid below. Give your graph a title, label the vertical and horizontal axes, use an appropriate scale, and display the data correctly.
1. What angle is formed by the hands of a clock when it is 7:00?

A. acute
B. obtuse
C. right
D. straight

2. Which set of fractions is ordered from least to greatest?
 A. \(\frac{1}{3}, \frac{1}{4}, \frac{1}{2} \)
 B. \(\frac{1}{4}, \frac{1}{3}, \frac{1}{2} \)
 C. \(\frac{1}{2}, \frac{1}{3}, \frac{1}{4} \)
 D. \(\frac{1}{4}, \frac{1}{2}, \frac{1}{3} \)

3. Danny has a summer job cutting grass for neighbors. The chart shows how much Danny will earn for cutting grass. Complete the pattern in the chart to show how much Danny would earn for working 6 days and 7 days.

<table>
<thead>
<tr>
<th>Number of Days Worked</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount Earned</td>
<td>$3.50</td>
<td>$7.00</td>
<td>$10.50</td>
<td>$14.00</td>
<td>$17.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Justify how you determined the amounts earned for 6 days and 7 days.
1. What is the volume of this fish tank?

![Fish tank diagram]

2. Rotate the figure 90° clockwise and flip it to the left.

![Rotated and flipped figure]

3. Three friends - Ali, Bill, and Clarice- are competing against each other in a race. List all of the different ways the friends could finish first, second, or third in the race. You may use the first letter of each student’s name in your list (for example-ABC).
1. Which two shapes are congruent?
 A.
 B.
 C.
 D.

2. Which one of the boxes below contain all **acute** angles?
 A.
 B.
 C.
 D.

3. How many outfits can Dana make?
1. How many triangles are in this figure?

![Diagram of triangles]

2. On the number line, what value is expressed by letter E. Write your answer in decimal form.

0 A B C D 1 E F G H 2

3. A survey will be taken to determine the favorite lunch of fifth graders at Forest Park Elementary. The choices will be made from pizza, chicken nuggets and hamburgers. In the space provided, list all the different ways these three lunch choices could place first, second and third in the survey.
The students in the fifth grade recorded their favorite color of sneakers. The results are shown below:

<table>
<thead>
<tr>
<th>Favorite Sneaker Colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of students</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

On the grid below, make a bar graph showing the number of students who prefer each color. Be sure to: • title the graph, • label the axes, • use appropriate consistent scales, and • accurately graph the data.

Using the information from your bar graph, write two statements that compare the data about the fifth grade students’ favorite colors of sneakers.
1. Duane is putting blocks into a box. How many blocks will the box hold?

Which number sentence would show how to solve this problem?
A. 6 x 3 = 18
B. 20 ÷ 2 = 10
C. 5 x 3 = 15
D. 3 x 4 = 12

2. Danny uses $\frac{1}{4}$ of his room for toys. Which of these represents the portion of the room used for toys?
A. .25
B. .50
C. .75
D. 1.00

3. When a composer writes music the following notes are used:

\[\text{eighth note} = \frac{1}{8}, \quad \text{quarter note} = \frac{1}{4}, \quad \text{half note} = \frac{1}{2}, \quad \text{whole note} = 1 \]

Using at least three notes, show a combination of notes equal to 2 whole notes
A.
B.
C.
D.
1. Use the chart to answer the following:

Servings Table

<table>
<thead>
<tr>
<th>Number of servings</th>
<th>Amount of Milk</th>
<th>Amount of eggs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{1}{4}$ cup</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{1}{2}$ cup</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1 cup</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>

Inez is planning to prepare scrambled eggs for her family’s breakfast. Using the serving table above, tell which number shows the LEAST number of eggs Inez should have on hand if she plans to cook for six people.

A. 6
B. 8
C. 12
D. 24

2. Beth’s grandmother, Sarah, is 58 years old. Beth is 21 years younger than her mother May. May is $\frac{1}{2}$ of Sarah’s age. How old is Beth?

A. 8
B. 12
C. 21
D. 29

3. When exotic plants and animals are transported to Florida and let out in Florida’s environment, the exotics often take over and destroy the native plants and animals. This is happening with the brown and green lizards. When the brown lizards move into a yard, it will only be a matter of time before the green lizards are gone.

Right now, in the Smiths’ yard, $\frac{2}{3}$ of the lizards are brown, and $\frac{1}{3}$ of the lizards are green. If Mrs. Smith has 4 green lizards in her yard, how many lizards are in her yard altogether?

A. 4
B. 8
C. 12
D. 3
1. The faucet in Mrs. Thompson’s room is leaking at the rate of 1 cup every 30 minutes. Mrs. Thompson arrives at school at exactly 7:30 a.m. every morning and leaves at exactly 3:00 p.m. every afternoon. How much water will leak from the faucet while she is at school?
 A. $4 \frac{1}{2}$ cups
 B. $7 \frac{1}{2}$ cups
 C. 11 cups
 D. 15 cups

2. A bake sale was held to make money for a field trip. The items sold brought in $1,306.00. It cost $453.00 to pay for renting tables and cleaning up. How much money in dollars, was left for the trip?
 A. 853.00
 B. $953.00
 C. $1659.00
 D. $1759.00

3. Which of the following figures shows a vertical flip of the above figure?
 A.
 B.
 C.
 D.

4. The numbers on a clock face divide one hour into twelfths. Each $\frac{1}{12}$ of an hour is 5 minutes. How many minutes does $\frac{5}{12}$ of an hour represent?
 A. 5 minutes
 B. 25 minutes
 C. 30 minutes
 D. 45 minutes
1. Angela had between 20 and 35 pieces of candy. When she put them in piles of 3 she had 2 left over, in piles of 4 she had 2 left over, and in piles of 6 she had 2 left over. How many pieces of candy did Angela have?

 A. 23
 B. 26
 C. 29
 D. 32

2. Kevin looked at the odometer in his family’s car. It showed that his mileage was 6,052. When he looked again, the 5 had changed to a 9 while the other number had remained the same. How many more miles had he driven?

 A. 4 miles
 B. 9 miles
 C. 40 miles
 D. 4,000 miles

3. Look at the following figures:

 #1 #2
 #3 #4

 Explain how figure #1 was changed to create #3.
1. Write one-third, one-eighth, one-half, and one-fourth. Order them from greatest to least.

2. A gallon of milk will fill \(n \) cups. Mei has 3 gallons. How many cups can Mei fill?

 A. \(3n \)
 B. \(3 + n \)
 C. \(n - 3 \)
 D. \(3 - n \)

3. Students are painting a 14 ft. x 19 ft. mural of the ocean. If a can of paint covers 75 square feet, how many cans of paint do they need to cover the entire mural?

 A. 1 can
 B. 2 cans
 C. 4 cans
 D. 5 cans
1. Which number represents 8 million, 7 hundred thousand, 2 tens?

A. 8,700,020
B. 872
C. 8,000,720
D. 8,720

2. Amy’s sandwich shop offers tuna salad, egg salad, and cheese sandwiches. Sandwiches can be made on whole wheat, rye or white bread. Show all the possible combinations that Amy’s shop offers.

3. “Smileys” are small pictures that look like faces when you turn them sideways. They are used to show feelings in messages sent by computers. Look at each smiley sideways. Then complete the pattern.

 :-D :-) :-/ :-(:D :-) :-/ :-(?
 laugh smile think frown laugh smile think frown ?

Which of these symbols and words would appear where the two question marks are?

A. :'(cry
B. :-) smile
C. :-D laugh
D. :-/ think
1. Complete the table below to show how much it would cost to buy ice cream for 5, 7, and 9 students.

<table>
<thead>
<tr>
<th>Number of students</th>
<th>Cost of ice cream</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$0.50</td>
</tr>
<tr>
<td>3</td>
<td>$1.50</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

2. Using the data in the table above, how much will ice cream cost for 20 students? Write an expression or equation that could be used to prove your solution.

3. A fifth grade class was trying to find out how much water they use while bathing each week. They used the estimate of 42 gallons of water per bathtub to determine the total gallons used. The chart below shows the results of their survey.

Survey Results

<table>
<thead>
<tr>
<th>Student</th>
<th>Times bathed In one week</th>
<th>Total water used (gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael</td>
<td>7</td>
<td>294</td>
</tr>
<tr>
<td>Jeanette</td>
<td>5</td>
<td>210</td>
</tr>
<tr>
<td>Janice</td>
<td>6</td>
<td>252</td>
</tr>
<tr>
<td>Amanda</td>
<td>7</td>
<td>294</td>
</tr>
<tr>
<td>Joseph</td>
<td>6</td>
<td>252</td>
</tr>
<tr>
<td>Elizabeth</td>
<td>6</td>
<td>252</td>
</tr>
<tr>
<td>Kenneth</td>
<td>5</td>
<td>210</td>
</tr>
<tr>
<td>Jonathan</td>
<td>7</td>
<td>294</td>
</tr>
<tr>
<td>Gabriel</td>
<td>7</td>
<td>294</td>
</tr>
<tr>
<td>Jessica</td>
<td>4</td>
<td>168</td>
</tr>
<tr>
<td>Felix</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Felix was absent when the survey was taken.

Based on the data the class collected, find the **mean** number of times bathed per week. Use the **mean** to predict the number of times Felix bathed in a week and the amount of water he used.

Mean:

Prediction for Felix:

Gallons of water he used:
1. Arrange the following fractions in order from greatest to least:
\[\frac{1}{2}, \frac{3}{4}, \frac{2}{8}, \frac{1}{3} \]

A. \[\frac{1}{2}, \frac{3}{4}, \frac{2}{8}, \frac{1}{3} \]
B. \[\frac{3}{4}, \frac{2}{8}, \frac{1}{3}, \frac{1}{2} \]
C. \[\frac{3}{4}, \frac{1}{2}, \frac{1}{3}, \frac{1}{2} \]
D. \[\frac{2}{8}, \frac{1}{3}, \frac{1}{2}, \frac{3}{4} \]

2. General Sherman’s army was divided in the following manner. \(\frac{1}{3} \) went to Atlanta, \(\frac{1}{6} \) went to Washington, \(\frac{3}{8} \) went to Jacksonville, and \(\frac{1}{24} \) went to Macon. If the troops were arranged in order from least to greatest, what was the order?

A. \[\frac{1}{3}, \frac{1}{24}, \frac{3}{8}, \frac{1}{6} \]
B. \[\frac{1}{24}, \frac{1}{6}, \frac{1}{3}, \frac{3}{8} \]
C. \[\frac{1}{6}, \frac{1}{3}, \frac{1}{24}, \frac{3}{8} \]
D. \[\frac{3}{8}, \frac{1}{6}, \frac{1}{24}, \frac{1}{3} \]

3. When covering a floor with carpeting, what concept of measurement must be considered?
A. perimeter
B. volume
C. weight
D. area

4. When calculating how many books can fit into a box, what concept of measurement must be considered?
A. volume
B. weight
C. area
D. perimeter
Members of the Let’s Like Lunch Committee took a survey to find which type of drink students enjoyed most with their lunches. This tally chart shows the results:

<table>
<thead>
<tr>
<th>Drink</th>
<th>Tally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple juice</td>
<td>111</td>
</tr>
<tr>
<td>Orange juice</td>
<td>111</td>
</tr>
<tr>
<td>Water</td>
<td>1</td>
</tr>
<tr>
<td>White milk</td>
<td>1111</td>
</tr>
<tr>
<td>Sport drink</td>
<td>1111</td>
</tr>
<tr>
<td>Chocolate milk</td>
<td>111</td>
</tr>
</tbody>
</table>

Make a bar graph showing the results of the survey. Be sure to:
- title the graph.
- label the graph axes.
- use appropriate and consistent intervals/scales.
- accurately graph the data.

Write two statements comparing the students’ favorite types of
1. Pedro placed the following amounts of pretzels into containers: 12, 16, 20, 30, 42. What was the mean number of pretzels placed into the containers?

2. Determine the mean from the following test scores José earned in Social Studies last week.

 Test Scores: 75, 86, 94, 70, 85

3. How many square meters in 100 cm x 100 cm?

4. Jake has \(\frac{1}{3} \) of a sugar cookie, \(\frac{1}{4} \) of a chocolate chip cookie, and \(\frac{1}{2} \) of an oatmeal cookie. Which cookie amount is the smallest?
1. Shawn found a sale on bikes. The bikes were 25% off. The original price of the bike was $120.00. How much did Shawn pay for the bike?

2. What is the best unit of measurement you would use to find the weight of an average man?
 A. grams
 B. kilograms
 C. milligrams
 D. tons

3. Carol ran a race. After the race, Carol’s heartbeat was 100 beats per minute. If n represents the number of times Tom’s heart beat per minute, which expression shows how many times Tom’s heart beat in 5 minutes?
 A. $5 + n$
 B. $5n$
 C. $5 - n$
 D. $\frac{5}{n}$

4. Based on the flag shown here,

Which figure shows the flag rotated 180° clockwise?

A. B. C. D.
1. Which point on the following number line represents $\frac{4}{5}$?

2. Which point on the number line represents $\frac{11}{4}$?

3. Draw an obtuse angle and an acute angle. Label each.

4. What is the difference between an acute and an obtuse angle?
1. When filling a bottle with soda, which measurement should be used?

 A. milliliters
 B. gram
 C. liters
 D. kilograms

2. Shamir bought 35 fig bars for his class. If they cost 25 cents per bar, how much did Shamir spend on the fig bars?

3. If the year is 1999 now, what year will it be in one century from now?

 A. 2000
 B. 2100
 C. 2099
 D. 2199

4. There were 55 delegates at the First Continental Congress. Now there are 15 less than 10 times that number of delegates in Congress. How many delegates are there now?
1. When putting ribbon around the outside of a picture frame, what concept of measurement must be considered?

 A. area
 B. perimeter
 C. volume
 D. time

2. While at the store purchasing milk, Michael was not sure he had enough money to buy 4 gallons of milk. If each gallon costs $2.98, and Michael brought $10.00, would he be able to buy the 4 gallons he needs? Explain your answer.

3. Carla is 10 years old and her mother is 25 years older. How old will Carla be when her mother’s age is twice Carla’s?
1. Draw a picture to show the addition of $\frac{1}{4}$ and $\frac{1}{2}$.

2. Plot the following coordinates and connect the points in order:
 (1,1) (0,3) (4,3) and (3,1)

 Connect the last point to the first point. What shape was created?

3. What tool would you use to measure an angle?
 A. compass
 B. circumference
 C. ruler
 D. protractor

4. Ted is twice as old as Kaitlyn. Pat is 5 years older than Kaitlyn. The sum of their ages is 41. How old are the 3 children?

 Kaitlyn__________ Pat______________
 Ted______________
1. Using mental math, explain how you determine the answer for 693.8 \div 10.

2. What is the greatest common factor for 12 and 16? Explain how you determined your answer.
The class kept a record of the weather for three weeks. Their results are shown below.

<table>
<thead>
<tr>
<th>Monday</th>
<th>Partly cloudy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>Rainy</td>
</tr>
<tr>
<td>Wednesday</td>
<td>Sunny</td>
</tr>
<tr>
<td>Thursday</td>
<td>Sunny</td>
</tr>
<tr>
<td>Friday</td>
<td>Sunny</td>
</tr>
<tr>
<td>Saturday</td>
<td>Partly cloudy</td>
</tr>
<tr>
<td>Sunday</td>
<td>Sunny</td>
</tr>
<tr>
<td>Monday</td>
<td>Sunny</td>
</tr>
<tr>
<td>Tuesday</td>
<td>Partly cloudy</td>
</tr>
<tr>
<td>Wednesday</td>
<td>Partly cloudy</td>
</tr>
<tr>
<td>Thursday</td>
<td>Rainy</td>
</tr>
<tr>
<td>Friday</td>
<td>Rainy</td>
</tr>
<tr>
<td>Saturday</td>
<td>Rainy</td>
</tr>
<tr>
<td>Sunday</td>
<td>Rainy</td>
</tr>
<tr>
<td>Monday</td>
<td>Partly cloudy</td>
</tr>
<tr>
<td>Tuesday</td>
<td>Sunny</td>
</tr>
<tr>
<td>Wednesday</td>
<td>Sunny</td>
</tr>
<tr>
<td>Thursday</td>
<td>Sunny</td>
</tr>
<tr>
<td>Friday</td>
<td>Partly cloudy</td>
</tr>
<tr>
<td>Saturday</td>
<td>Sunny</td>
</tr>
<tr>
<td>Sunday</td>
<td>Sunny</td>
</tr>
</tbody>
</table>

Part A. On the grid, make a bar graph showing the number of days of each kind of weather. Be sure to give the graph a title, label the axes, use the correct information, and use the same scale in all parts.

Part B. Write two sentences comparing the types of data shown in the graph.
1. Arrange the digits and decimal point to create the **smallest** number possible.

 \[3 . \ 6 \ 4\]

2. The Brown’s family just put in a new pool. Mr. Brown wants to put a fence around the pool. Approximately how much fencing should Mr. Brown buy?

 \[\square \ = \ 1 \text{ sq. ft.}\]

3. The bookshelf is 4 ft. 2 inches high. Approximately how tall is the wall on which it stands?

4. Reba created a pattern that looked like this.

 \[
 \begin{array}{c}
 \quad \text{O} \\
 \quad \text{O} \quad \text{O} \\
 \quad \text{O} \quad \text{O} \\
 \quad \text{O} \quad \text{O} \\
 \end{array}
 \]

 How many dots will be in the next group?
1. Drake Middle School has 5 periods of equal length during the day. School begins at 8:45. Study the pattern for the first three periods. Find the beginning times of the other 2 periods and what time school is over.

<table>
<thead>
<tr>
<th>Period</th>
<th>Beginning Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8:45</td>
</tr>
<tr>
<td>2</td>
<td>10:00</td>
</tr>
<tr>
<td>3</td>
<td>11:15</td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

School is over at ________________

2. Rene has a summer job bathing the neighbor’s dogs. The chart shows how much money Renee earned for bathing dogs. Complete the pattern in the chart to show how much Renee earned for washing 7 dogs.

<table>
<thead>
<tr>
<th>Number of Dogs Washed</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount Earned</td>
<td>$3.75</td>
<td>$7.50</td>
<td>$11.25</td>
<td>$15.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Plot point A on the coordinate grid below at 3, 2.

2. How many small rectangles can cover the large rectangle without overlapping?

3. How many box A’s can fit into box B?

4. Which student ran the mile the fastest?

<table>
<thead>
<tr>
<th>Student</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Julio</td>
<td>6:17</td>
</tr>
<tr>
<td>Michael</td>
<td>6:06</td>
</tr>
<tr>
<td>Cathy</td>
<td>7:03</td>
</tr>
</tbody>
</table>
1. Karen has 6 dollars. That is $\frac{1}{2}$ as much as she had yesterday. What numerical expression could be used to calculate how much money Karen had yesterday?
 A. $\frac{1}{2} \times 6$
 B. 2×6
 C. $\frac{1}{2} + 6$
 D. $6 \div 2$

2. Elizabeth ate 5 times as many jellybeans as Douglas. If Doug ate N jellybeans, which equation gives you the number of jellybeans Elizabeth ate?
 A. $N \times 4$
 B. $5N$
 C. $20N$
 D. $20 \div N$

3. If Gwen received a one-hundred dollar raise over her present salary, N, which expression would you use to find Gwen’s new salary?
 A. $100N$
 B. $100 - N$
 C. $\frac{100}{N}$
 D. $N + 100$

4. Which tool would you use to measure the amount of precipitation that fell in St. Louis, Missouri in October?
 A. protractor
 B. rain gauge
 C. thermometer
 D. scale
1. Draw a figure with a perimeter of 20 feet and an area of 25 square feet.

2. If John Adams, John Hancock and Thomas Jefferson left the First Continental Congress one at a time (for example, Adams first, Hancock second, and Jefferson third), in how many possible different orders could the men have exited the meeting? List all possible ways.
1. The temperature at noon was 4°C. By midnight the temperature had fallen 8°. What was the temperature at midnight?

2. Mike heated a bottle for his baby sister. It could hold which of the following amount of milk?

 A. 0.23L
 B. 2.30L
 C. 23L
 D. 230L

3. Karen’s Car Service charges $0.50 for the first mile and $0.15 for each additional \(\frac{1}{4} \) mile. What is the charge for a distance \(1\frac{1}{2} \) miles?

4. Mybree’s car went three times as fast as Juan’s car. If \(N \) represents the speed of Juan’s car, which of these expressions would help you find how fast Mybree’s car went?

 A. \(\frac{N}{3} \)
 B. 3N
 C. 3 + N
 D. \(\frac{N}{3} \)
Use the following information to create a histogram on the grid.

Each week the Broad Newspaper lists the 10 top selling books. It also tells how many weeks the books have been on the list. As of June 24, the following books had been on the top ten list for these number of weeks: 1, 1, 2, 1, 2, 2, 6, 3, 5, 4, 4, 3, 10, 10, 7, 7, 4, 3, 1, 10, 2, 7, 8, 9, 4, 9, 1, 1, 6, 10.

Make a frequency table to help you make the histogram

<table>
<thead>
<tr>
<th>Number of Weeks</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 2</td>
<td></td>
</tr>
<tr>
<td>3 – 4</td>
<td></td>
</tr>
<tr>
<td>5 – 6</td>
<td></td>
</tr>
<tr>
<td>7 – 8</td>
<td></td>
</tr>
<tr>
<td>9 - 10</td>
<td></td>
</tr>
</tbody>
</table>

Use the following grid to make your histogram.
1. What figure will the following pattern make?

A. cube
B. triangular pyramid
C. triangle
D. pentagon

2. How many vertices are on the following figure?

3. Thursday morning five friends went shopping. They were looking for items on sale. Joey spent three times as much as Mary. Mabel spent $\frac{1}{2}$ as much as Emilio. Emilio spent $\frac{1}{3}$ as much as Joey. Elvis spent $\frac{1}{5}$ as much as Mabel. Mary spent $20.00. How much did each friend spend?
1. What fraction of the items are stars?

A. \(\frac{1}{3} \)
B. \(\frac{2}{7} \)
C. \(\frac{2}{4} \)
D. \(\frac{2}{5} \)

2. The length of the rectangle is 2 times the width plus three inches. If the width of the rectangle is 5 inches, what is the length of the rectangle?

3. Two trucks with a maximum cargo load of 2 tons each must deliver crates weighing 860 pounds; 1,350 pounds; 2,400 pounds and 3,050 pounds. Which crates should be loaded for the same trip so the trucks are not overloaded?

4. Octavio has 3 feet, 7 inches of yarn. If he uses 1 foot 10 inches, how much yarn will be left?

A. 1 foot, 3 inches
B. 1 foot, 9 inches
C. 5 feet, 5 inches
D. 4 feet, 17 inches
1. Twenty squares are placed side by side in a row. The side of each square measures 1 inch. What is the perimeter of the resulting figure in inches? In feet and inches?

2. Using the set below, write an expression that represents the total amount of objects. Explain your answer.
1. When writing a report on the passage of a bill in Congress, Cathy and Sharon worked as a team. They completed 11 pages altogether. Sharon completed 2 times plus 5 as many as Cathy. What expression best shows this, if N represents the number of pages Cathy completed?
 A. 2N - 5 = 11
 B. 2N + 5 = 11
 C. 2 x 5 + N = 11
 D. (5 x 2)N = 11

2. Mrs. Jones class of 36 fifth graders surveyed the entire class to see which movies they liked the best. The graph below displays the results. Use the graph to answer these questions.

 ![Pie Chart]

 How many of Mrs. Jone’s students liked comedy the best?
 A. 7 students
 B. 14 students
 C. 20 students
 D. 24 students

 How many of Mrs. Jone’s students liked adventure and science fiction films best?
 A. 7 students
 B. 12 students
 C. 14 students
 D. 24 students

 How many more students voted for comedy movies rather than adventure and science fiction?
 A. 8 students
 C. 14 students
B. 12 students
D. 22 students
1. Normal room temperature is 20°C hotter than the temperature at which water freezes. A hot day is 15°C hotter than normal room temperature. Shade the thermometers below to show room temperature and the temperature on a hot day.

2. Sam’s car weighs 2,455 pounds. How many tons does his car weigh?

3. What is another name for 876,342 times 10?
 A. 87,634.2
 B. 876,352
 C. 876,332
 D. 8,763,420

4. How much bigger is lot 6 compared to lot 2?
1. In the drawing below, which angle is a right angle?

2. Freddie wanted to put a sidewalk directly around his rectangular pool. What measurement must he take?
 A. area
 B. perimeter
 C. volume
 D. circumference

3. The above scale is balanced. How many squares must you add to the left side of the scale below to balance it?

4. What two numbers make this a true number sentence?
 \[36 + 75 = 5 + \square + \square\]
 A. 3, 70
 B. 5, 90
 C. 50, 56
 D. 11,100
1. Jordan wants to buy the following items: 3 erasers, 4 pens, 2 notebooks, and a ruler. He has a 5 dollar bill. Use estimation to see if Jordan has enough money. Explain your answer.

- Erasers: $0.29
- Pens: $0.72
- Notebook: $1.08
- Ruler: $0.25

Use the diagram of Jason’s room to answer the next two questions.

2. This is the floor space of Jason’s room. What is the area of this room?
 A. 72 sq. ft.
 B. 66 sq. ft.
 C. 60 sq. ft.
 D. 34 sq. ft.

3. What is the perimeter of the room?
 A. 19 ft.
 B. 30 ft.
 C. 34 ft.
 D. 72 ft.
1. There were N red birds sitting on a wire. There were 15 fewer blue birds than red birds sitting on the same wire. There were a total of 65 red and blue birds sitting on the wire. Write an expression that shows how many of each bird was sitting on the wire. How many red and blue birds were there?

Expression:______________________________

Red birds_______________________________

Blue birds_______________________________

2. Daniel wants to find the volume of box A. What must Daniel do to find that volume?
1. In 1773, the British put a tax of $0.03 on every pound of tea. About how much tax would there have been on 4,752 ounces of tea? (16 ounces=1 pound)

2. What is the perimeter of the inner rectangle if there is a 2-inch border between the inner and the outer rectangle?

3. Miami, Florida had a temperature of 22°C. One the same day, Duluth, Minnesota had a temperature of -12°C. How many degrees warmer was Miami?

4. As the weather gets warmer, more people use the community swimming pool. Suppose that at 70°F, 20 people use the pool, and at 72°F, 25 people use the pool. If this pattern continues, how many people will use the pool when the temperature reaches 80°F?
1. Mrs. Day’s class sold candy to raise money. Their goal was to raise $200.00. They raised almost 90% of their goal. Which graph shows how much they earned?

A. $200 B. $200 C. $200 D. $200

2. Use the graph to answer the following questions.
A fifth grade class voted on their favorite pizza. Here are the results:

What percentage of the fifth graders liked sausage?
A. 20% B. 25% C. 45% D. 80%

3. Without looking, the teacher picked one student’s name from a hat. What topping is most likely to be that student’s favorite?
A. mushroom B. pepperoni C. sausage D. vegetable

4. Which two topping choices together were picked by \(\frac{3}{4} \) of the students?
A. mushroom and pepperoni B. pepperoni and vegetable C. pepperoni and sausage D. mushroom and sausage
1. Circle the quadrilaterals.

Explain why all the shapes you circled are quadrilaterals.

2. Draw a 180° angle. What type of angle is this?
Use the following information for questions 1 and 2.

Jack has several types of music in his CD collection. 0.5 of his collection is rock-n-roll. 0.25 of his collection is country. 0.2 of his collection is jazz. The rest of his collection is classical.

1. What percent of his collection is rock-n-roll?
 A. 5%
 B. 10%
 C. 25%
 D. 50%

2. What percent of Jack’s CD collection is classical?
 A. 5%
 B. 10%
 C. 15%
 D. 25%

3. The following table shows how many grains of sand fall through an hour glass per second. Complete the table to show how many grains of sand fall in 10 seconds.

<table>
<thead>
<tr>
<th>Number of seconds</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of grains of sand</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Explain how the number of grains of sand change as the number of seconds change.
1. What metric unit would be the most reasonable to use for measuring the length of a sheet of paper?
A. liter
B. centimeter
C. grams
D. meter

Use the following information to answer questions 2 and 3.
After returning from a party, Keisha counted up her candy.
She had received 48 pieces of candy. Keisha’s mother told her that it would be nice to give away \(\frac{2}{8} \) of her candy to her younger brother Theo.

2. What fraction below is equivalent to the \(\frac{2}{8} \) that her mother suggested?
A. \(\frac{4}{16} \)
B. \(\frac{4}{8} \)
C. \(\frac{2}{4} \)
D. \(\frac{1}{6} \)

3. How many pieces of candy will Theo receive, if Keisha follows her mother’s suggestion?
A. 6 B. 8 C. 12 D. 24

4. At Jaquanda’s birthday party, her mother cut the birthday cake into 12 pieces. After the party, there were 4 pieces of cake left over. Which fraction below shows the amount of cake that was eaten at the party.
A. \(\frac{4}{12} \) B. \(\frac{6}{12} \)
C. \(\frac{8}{12} \) D. \(\frac{12}{4} \)
Use the key below to assist you with the question.
60 seconds = 1 minute
60 minutes = 1 hour

1. Keith played video games $\frac{5}{6}$ of an hour on Sunday morning and for $\frac{1}{3}$ of an hour on Sunday evening. For how many more minutes did Keith play video games in the morning than in the evening?
 A. 6 minutes
 B. 20 minutes
 C. 30 minutes
 D. 50 minutes

2. What metric unit would be the most reasonable to use for measuring the capacity of a fish tank?
 A. liters
 B. milliliters
 C. meters
 D. grams

3. Andrew left Chicago on Tuesday at 2:25 p.m. He returned to Chicago on Thursday at 11:30 a.m. How long was Andrew gone?

Use the graph below to answer the following question:

FAVORITE CAR COLORS IN TAMPA

<table>
<thead>
<tr>
<th>PINK</th>
<th>BLACK</th>
<th>WHITE</th>
<th>GREEN</th>
<th>PURPLE</th>
<th>SILVER</th>
<th>RED</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

☐ = 1000 VOTES

4. Which car color is the second most popular?
 A. red
 B. black
 C. silver
 D. pink
1. Using the circles, draw a picture to show the subtraction of $2 \frac{1}{2} - 1 \frac{1}{4}$.

\[\begin{array}{ccc} \circ \circ \circ - \circ \circ = \circ \circ \end{array} \]

2. Which measurement would you use to determine the weight of a small bag of potato chips?
 A. grams
 B. centimeters
 C. meters
 D. kilograms

3. Explain how you can use this picture to multiply $\frac{3}{5}$ and $\frac{1}{4}$.

\[\begin{array}{cccccccc} & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline \end{array} \]
1. Sean flips 2 pennies. What is the probability that he will get 1 head and 1 tail?
 A. \(\frac{0}{4} \)
 B. \(\frac{1}{4} \)
 C. \(\frac{2}{4} \)
 D. \(\frac{3}{4} \)

2. What is the probability of spinning blue?
 A. \(\frac{1}{2} \)
 B. \(\frac{1}{3} \)
 C. \(\frac{1}{4} \)
 D. \(\frac{2}{3} \)

3. Anna grouped the angles as follows:
 Group A Group B
 \[\begin{array}{c}
 \text{ } \\
 \end{array} \]

 Write a title for each group in the line below.

 Group A: ____________________________

 Group B: ____________________________

 Explain why you chose these titles.
Mrs. Rogers has the following trapezoid table in her classroom. She needs to determine the area of the table’s surface. Using what you know about the area of a rectangle and a triangle, determine the area of the trapezoid. Explain how you arrived at your answer.

Area of rectangle = \(l \times w \)

Area of triangle = \(\frac{1}{2}(b \times h) \)
1. Explain how you can use the picture to add $\frac{3}{4} + \frac{1}{5}$.

![Diagram]

2. What would the length and width of a rectangle be whose area is 30 square units and a perimeter of 22 units?

3. If N represents the number of boys in Ms. Smith’s fifth grade class, how many boys are in the class?

\[20 = 3N - N\]

A. 10 boys
B. 12 boys
C. 23 boys
D. 203 boys
1. Three fourths of the 5th graders in Ms. Whitman’s class were in uniform. Which percentage below represents the part of the class NOT in uniform?

 A. 100%
 B. 75%
 C. 50%
 D. 25%

2. A jar has a capacity of 1.5 L. How many mL is that?

 A. 1.5 mL
 B. 1,500 mL
 C. 150 mL
 D. .15 ML

3. Which number sentence expresses the statement: Twice a number increased by that number (N) is 15.

 A. 2 + 2N = 15
 B. 2N =15
 C. 2N + N = 15
 D. 2N = N + 15

4. Kim wins if the spinner stops on a star. What is the probability that Kim will win?

 A. \(\frac{1}{4} \)
 B. \(\frac{2}{4} \)
 C. \(\frac{3}{4} \)
 D. \(\frac{2}{2} \)
1. Order the following amounts from smallest to greatest.

\[\frac{3}{4}, \quad 97\%, \quad 25\%, \quad 0.5 \]

2. You want to know the capacity of a can. What would you use?

A. ruler
B. scale
C. measuring cup
D. thermometer

3. As the day goes by, more and more people visit the toy store. In the first hour 12 people visit the store. In the second hour 18 people visit the store, and in the third hour 24 people. If the store is open from 8 A.M.-5 P.M., and if this pattern continues, how many people will visit the store between 1 P.M. and 2 P.M.? Explain how you got your answer. Complete the table.

<table>
<thead>
<tr>
<th>Hour</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>8-9</td>
<td>9-10</td>
<td>10-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># of customers</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Kristoff is collecting photographs. Each photo album holds 36 photos. If he collects 9 photos per week, how many weeks does it take to fill an album?
 A. 4 weeks
 B. 5 weeks
 C. 36 weeks
 D. 52 weeks

2. Basil is recording temperatures for a weather experiment. When he woke up in the morning, he looked at the thermometer and noticed it read 5 degrees Celsius. At lunchtime he checked the temperature again and noticed it had dropped 9 degrees Celsius. What was the temperature at lunchtime?
 A. 14 degrees Celsius
 B. 40 degrees Celsius
 C. -4 degrees Celsius
 D. -14 degrees Celsius

3. Clive had 28 yo-yos. Some of Clive’s friends came over and each borrowed an equal number of yo-yos. Each left with 4. When they left, Clive had no yo-yos left. How many of Clive’s friends borrowed yo-yos?
 A. 3
 B. 6
 C. 7
 D. 8

4. In the valley, Heath was preparing his hot air balloon for flight. He began at an elevation of 40 ft. below sea level. He went up 600 feet in his hot air balloon. How many feet above sea level was he then?
 A. 40 feet
 B. 560 feet
 C. 600 feet
 D. 640 feet
Janice was going to plant a garden, but realized she needed a larger piece of land. The new garden has twice the length and width of the one shown below.

1. What is the perimeter of the new garden?
 A. 80 feet
 B. 320 feet
 C. 72 feet
 D. 36 feet

2. Together Wilma and Betty weigh 250 pounds. Wilma weighs 50 pounds more than Betty does. How much does Wilma weigh?
 A. 50 pounds
 B. 100 pounds
 C. 150 pounds
 D. 200 pounds

3. Select the best number sentence for: Three less than 3 times a number is twelve.
 A. 3 - 3N = 12
 B. 3 = N + 12
 C. 3 - 3(N) = 12
 D. 3N - 3 = 12

4. Mrs. Monroe makes trail mix. Each batch contains:
 - 40% pretzels
 - 20% raisins
 - 30% nuts
 - 10% chocolate chips
What percent of the trail mix is NOT nuts?
 A. 70%
 B. 40%
 C. 10%
Jose put the following jellybeans in a bag.

- Green: 15
- Red: 8
- Black: 18
- Purple: 9

1. Without looking, Jose’s friend pulls out a jellybean. What is the probability that it is purple?
 A. \(\frac{8}{50} \)
 B. \(\frac{9}{50} \)
 C. \(\frac{15}{50} \)
 D. \(\frac{18}{50} \)

2. Which jelly bean color has a 0 probability of being chosen?
 A. Green
 B. Black
 C. Purple
 D. Orange

3. What is the probability of choosing a green jellybean?
 A. \(\frac{8}{50} \)
 B. \(\frac{9}{50} \)
 C. \(\frac{15}{50} \)
 D. \(\frac{18}{50} \)

4. Which two colors are most likely to be drawn?
 A. Green and red
 B. Green and black
 C. Red and purple
 D. Purple and black
1. As it began to rain, Alex started to cover the infield (interior area of the baseball field). How much area did Alex cover?

A. 8,100 square feet
B. 360 square feet
C. 180 square feet
D. 4,050 square feet

2. Kyle, Stan, and Eric are sharing $\frac{3}{4}$ of a pie evenly. What fraction will each boy receive?

A. $\frac{1}{3}$
B. $\frac{1}{4}$
C. $\frac{3}{3}$
D. $\frac{3}{4}$

Use the following information to answer the next two questions. In Mr. Aborn’s class there are 15 girls and 10 boys.

3. What fractional part of the class is the set of boys?

A. $\frac{2}{5}$
B. $\frac{3}{5}$
C. $\frac{2}{3}$
D. $\frac{3}{2}$

4. What is the ratio of the girls to the boys?

A. $\frac{2}{3}$
B. $\frac{3}{2}$
C. $\frac{2}{5}$
D. $\frac{3}{8}$
1. What is the value of N in the chart shown below?

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>♣</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

2. What is the value of N in the chart shown below?

<table>
<thead>
<tr>
<th>△</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>9</td>
<td>11</td>
<td></td>
<td>N</td>
</tr>
</tbody>
</table>

3. What percentage of the cars in the United States are midsize cars? Look at the following graph.

![Percentage of Cars in U.S.](image)

4. Todd is preparing his aquarium for fish. He needs to fill the aquarium $\frac{1}{4}$ full with stones.

How many cubic inches of stones will Todd need to fill the tank?
1. Fredricka’s mother asked her to buy \(1 \frac{1}{4}\) pounds of smoked turkey. When Fredricka got to the deli counter she noticed that the scale only measures in decimals. What will the scale read when it reaches \(1 \frac{1}{4}\) pounds?
 A. 1.14
 B. 1.41
 C. 1.25
 D. 0.125

2. Write a number sentence to express the statement: Some number less four is 8.

Use the following information below to answer the next question.

Wesley has \(\frac{1}{2}\) pack of football cards. Jill gives him an additional \(\frac{1}{4}\) pack and Tanya gives him yet another \(\frac{1}{4}\) pack.

3. What fractional part of a pack does Wesley have now?
 A. \(\frac{1}{2}\)
 B. \(\frac{3}{10}\)
 C. \(\frac{4}{4}\)
 D. \(\frac{6}{4}\)
Grade 5 • Mathematics Review Day 140

1. Which grouping of measurements is from smallest to largest?
 A. milligrams; grams; kilograms
 B. grams; milligrams; kilograms
 C. kilograms; milligrams; grams
 D. milligrams; kilograms; grams

2. You continued this pattern three more times. Which piece would you use?
 ____, , , ____, ____,
 __?__
 A. B. C. D.

Use the chart below to answer the following questions.

Katz Skate Shop

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skates</td>
<td>$119.00 pair</td>
</tr>
<tr>
<td>Wheels</td>
<td>$25.50 pack</td>
</tr>
<tr>
<td>Helmet</td>
<td>$32.00 each</td>
</tr>
<tr>
<td>Hockey Stick</td>
<td>$18.00 each</td>
</tr>
<tr>
<td>Hockey Jersey</td>
<td>$44.25 each</td>
</tr>
</tbody>
</table>

3. Stephan is purchasing hockey sticks for his team. Including Stephan there are 12 people on the team. How much will it cost Stephan to purchase a stick for every member of the team?
 A. $30.00 B. $54.00 C. $216.00 D. $254.00

4. Amy, the goalie on the team, has exactly $100.00 to spend at the skate shop. Amy would NOT have enough money to buy which combination below?
 A. 1 pack of wheels, 1 helmet, and 1 hockey jersey
 B. 1 hockey stick, 1 pack of wheels, and 1 hockey jersey
 C. 1 pack of wheels and 1 helmet
 D. 1 helmet and 1 jersey
1. Mr. Adams’ class voted where to go on a field trip. The votes are tallied in the chart.

<table>
<thead>
<tr>
<th>Place</th>
<th>Number of Votes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Museum</td>
<td></td>
</tr>
<tr>
<td>Zoo</td>
<td>///</td>
</tr>
<tr>
<td>Art Museum</td>
<td></td>
</tr>
<tr>
<td>Aquarium</td>
<td>///</td>
</tr>
<tr>
<td>Natural Springs</td>
<td>///</td>
</tr>
</tbody>
</table>

On the grid below, make a bar graph that displays the data. Be sure to:
- title the graph
- label the axes
- use appropriate and consistent intervals/scales
- accurately graph the data

Write two true statements comparing the data in the graph.
1. Due to complaints, the local water treatment plant had their water tested for chlorine. It was found that 0.4 of the water sample was chlorine. What percent of the sample was chlorine?
 A. 0.4%
 B. 4%
 C. 40%
 D. 400%

2. There are 35 cats (C) and 52 dogs (D) at an animal shelter when it opens on Monday morning. One cat and two dogs are adopted by the end of each day. How many cats and dogs will there be when they close on Wednesday if no other animals are brought into the shelter?
 A. 75
 B. 78
 C. 81
 D. 84

3. The first row of circles has one circle; the second row has three circles, the third row has five circles. If the pattern continues, how many circles will the eighth row have?

 A. 9
 B. 11
 C. 13
 D. 15

4. What would be the best unit of measurement to use if you wanted to estimate the length of a hallway in your school?
 A. kilometers
 B. meters
 C. centimeters
 D. millimeters
Vicky flipped the figure below over the dotted line.

1. Which figure shows the flip?
 A. [Figure A]
 B. [Figure B]
 C. [Figure C]
 D. [Figure D]

2. Which set is best represented by the expression \(\frac{3}{4} + \frac{9}{12} \)?
 A. [Set A]
 B. [Set B]
 C. [Set C]
 D. [Set D]

3. Estimate the area of this figure in square units?
 A. 7
 B. 8
 C. 9
 D. 12
1. Freddy has a job walking dogs. The table below shows how many dogs Freddy walks per day. Complete the pattern in the table to show how many dogs Freddy walks on Saturday and Sunday.

<table>
<thead>
<tr>
<th>Mon</th>
<th>Tues</th>
<th>Wed</th>
<th>Thurs</th>
<th>Fri</th>
<th>Sat</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>20</td>
<td>16</td>
<td>12</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the space below, explain how the amount of dogs Freddie walked changes as the days change.

Use the following graph to answer the next two questions.

Population of Centerville

- Population in Hundred
- Population in Thousands

2. Between which two years did the population DECREASE?
 A. 1986-1988
 B. 1988-1990
 C. 1990-1992
 D. 1992-1994

3. What was the INCREASE of population between 1986 and 1990?
 A. 300,000
 B. 250,000
 C. 200,000
 D. 150,000
Use the following information to answer the next three questions. Minh is making his famous trail mix for the scout camping trip. Here is the recipe:

\[
\begin{align*}
\frac{1}{4} & \text{ cup of M and Ms} \\
\frac{3}{4} & \text{ cup of raisins} \\
\frac{2}{8} & \text{ cup of dried apricots} \\
\frac{3}{8} & \text{ cup of sunflower seeds} \\
\frac{1}{8} & \text{ cup of dried pineapple} \\
2\frac{1}{8} & \text{ cups of peanuts}
\end{align*}
\]

1. How many cups does his recipe make?

 A. 3 \(\frac{1}{4}\)
 B. 3 \(\frac{7}{8}\)
 C. 3 \(\frac{2}{8}\)
 D. 3

2. Which ingredient in the recipe for Trail Mix is the largest amount?
 A. M and Ms
 B. sunflower seeds
 C. raisins
 D. peanuts

3. Which fraction below is another way to express the amount of peanuts in Minh’s famous trail mix?
 A. \(\frac{3}{8}\)
 B. \(\frac{11}{8}\)
 C. \(\frac{16}{8}\)
 D. \(\frac{17}{8}\)

4. Simon and Naomi collected 19 ounces of pond water. Simon collected seven more ounces than Naomi. Which number sentence could be used to solve this problem?
 A. 19 - N = 7
 B. 19 = N + 7
 C. 19 = (N + 7) + N
 D. 19 = (N - 7) + 7
1. There are 7 floors at Jill’s hotel. On the first floor there are 80 rooms. On the second floor there are 68 rooms. The third floor has 56 rooms. How many rooms are on the 6th floor if the pattern continues?
 A. 44
 B. 32
 C. 20
 D. 8

Use the information below to answer the question:

Fred Fishman and Greg Gillman were in a swim competition. This chart shows their finishing times.

<table>
<thead>
<tr>
<th>Name</th>
<th>Finishing Time (in minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Greg Gillman</td>
<td>2.5</td>
</tr>
<tr>
<td>Dolph Finn</td>
<td>3.0</td>
</tr>
<tr>
<td>Fred Fishman</td>
<td>1.5</td>
</tr>
</tbody>
</table>

2. Which mixed number is Fred’s finishing time?
 A. $1 \frac{1}{2}$
 B. $1 \frac{1}{5}$
 C. $2 \frac{1}{2}$
 D. $2 \frac{1}{5}$

3. Samuel wants to frame his favorite picture. Which mathematical idea will he use to find out what size frame he needs to buy?
 A. area
 B. weight
 C. volume
 D. perimeter

4. Raul is buying soda for a small party. Which amount of soda is reasonable to find at the party?
 A. 8L
 B. 8mL
 C. 8mg
 D. 8g
Use the following information to answer the questions

<table>
<thead>
<tr>
<th>Test Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Joe</td>
</tr>
<tr>
<td>Rebecca</td>
</tr>
<tr>
<td>Susan</td>
</tr>
<tr>
<td>Tyler</td>
</tr>
<tr>
<td>Samuel</td>
</tr>
</tbody>
</table>

1. What is the mean of the test scores?
 A. 25%
 B. 80%
 C. 85%
 D. 90%

2. What is the mode of the test scores?
 A. 25%
 B. 80%
 C. 85%
 D. 90%

3. What is the median of the test scores?
 A. 25%
 B. 80%
 C. 85%
 D. 90%

4. What is the range of the test scores?
 A. 25%
 B. 80%
 C. 85%
 D. 90%
A student tossed a number cube, which had the numbers 1 through 6 on each face. He threw it 30 times and recorded these outcomes.

1 3 2 4 6 5 1 3 5 6 3 1 2
2 4 2 2 1 3 1 6 4 3 1 1 3
4 6 2 1

Make a bar graph showing the above information. Use the table to help you sort the information.

<table>
<thead>
<tr>
<th>Number</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Write two statements comparing the information on the grid.
1. Beth power walks 10 miles every day. She walks $5\frac{1}{4}$ miles before lunch. How many miles does she walk after lunch?

A. $4\frac{1}{2}$

B. $4\frac{3}{4}$

C. $5\frac{1}{2}$

D. $5\frac{3}{4}$

2. Jessica performs a magic trick in which she puts her body in a box (rectangular prism). The dimensions of the box are:

- length = 2 feet
- height = 3 feet
- width = 2 feet

What is the VOLUME of the box?

A. 8 cubic ft.

B. 12 cubic ft.

C. 18 cubic ft.

D. 24 cubic ft.

3. In Sasha’s yard there are twice as many rattlesnakes as there are in Gordy’s yard for a total of 15 rattlesnakes. Write an algebraic expression to show the total number of rattlesnakes.

How many rattlesnakes are in Sasha’s yard?
Grade 5 • Mathematics Review Day 150

1. Which of the following is most likely an acute, isosceles triangle?

 A.

 B.

 C.

 D.

2. Tim’s mom placed a turkey in the oven at 7:45 a.m. It needs to cook for six and a half hours. She wants Tim to set the table about fifteen minutes before she takes the turkey out of the oven. At what time should Tim set the table?

 A. 1:00
 B. 1:45
 C. 2:00
 D. 2:45

3. Which unit of measurement is most appropriate to measure the length of a toothpick?

 A. mm
 B. km
 C. m
 D. cm

4. What is the value of N in the following expression?

 \[30\% \text{ of } N = 30 \]

 A. 1
 B. 30
 C. 100
 D. 1,000

1. Which number sentence expresses a certain number plus 2 times itself is 21?
 A. 2x + 21
 B. 2 + x = 21
 C. x + 2x = 21
 D. 2x + 2x = 21

2. Which expression matches the set below?

 😊★😊★😊★😊★

 A. F + S
 B. 4S + F
 C. 2S + 2F
 D. 4F + 4S

3. Debbie’s 5th grade class is going on a field trip. The class will leave at 9:15 A.M. and will return in three hours and fifteen minutes. At what time will the class return from the field trip?
 A. 11:15 A.M.
 B. 11:30 P.M.
 C. 12:15 A.M.
 D. 12:30 P.M.

4. Melissa plans on leaving work at 4:00 P.M. She has to run a few errands before going home. It will take her 30 minutes to pick up the snacks, 20 minutes to pick out a video, and 25 minutes to get home. At what time will Melissa arrive home?
 A. 5:15 P.M.
 B. 5:00 P.M.
 C. 4:50 P.M.
 D. 4:30 P.M.
Use the following information to answer the questions:

1. ABOUT how far is it from the Island of Despair to Danger Island with a stop at Lost Island?
 A. 120 km
 B. 130 km
 C. 140 km
 D. 150 km

2. Joe travels from Forgotten Island to Danger Island. Barbara travels from the Island of Despair to Lost Island. ABOUT how much farther did Barbara travel than Joe?
 A. 40 km
 B. 45 km
 C. 50 km
 D. 60 km

3. Barbara and Joe are delivering goods from Forgotten Island to Danger Island. Barbara and Joe make 3 round trips a week. Exactly how far do Barbara and Joe travel on the delivery route in one week?
 A. 53 km
 B. 106 km
 C. 318 km
 D. 371 km

4. The map shows that it is 184 kilometers from Forgotten Island to the Island of Despair. Traveling at 8 km per hour, how many hours does it take to travel from Forgotten Island to the Island of Despair?
 A. 8 hours
 B. 23 hours
 C. 184 hours
 D. 1,472 hours
1. ABOUT how much water would a standard bathtub need to be completely filled?
 A. 20 mL
 B. 2 gallons
 C. 20 quarts
 D. 200 L

2. How many triangles are in this design?

![Diagram of triangles]

3. The Department Store is having a huge sale! Laura, the store clerk, was counting shirts for the sale. She counted three times as many yellow shirts as blue shirts, and two fewer blue shirts than red shirts. There are 12 red shirts. How many yellow shirts are there?
 A. 10
 B. 12
 C. 14
 D. 30

Use the clock to answer the following question:

![Clock image]

4. Which angle is represented on the hands of the clock above?
 A. 45° B. 90° C. 180° D. 360°
1. How many meters in 10 x 10 km?

2. How many centimeters in 100 mm x 1,000 mm?

3. Anna scored the following on her math tests in October:
 81, 79, 81, 37, 65, 87, 93, 81, 87
 What is the mode of the scores?

4. Harry collected flowers in his garden. Each collected flower had the following number of petals: 5, 7, 10, 10, 3, 15, 12
 What is the median number of petals on the flowers?
1. Mrs. Orr is planning an end of the year party for the fifth graders at Forest Hills Elementary. Each fifth grader is given 4 invitations. There are a total of 144 students in the fifth grade. Which equation could be used to find the number (n) of invitations she needs to print?
 A. $144 \times 4 = n$
 B. $144 \div 4 = n$
 C. $n + 4 = 144$
 D. $144 - n = 3$

Use the following information to answer the next two questions:

Toby, Keith, Sam and Sarah are traveling in the passenger elevator at a hotel in downtown Tampa. One their way up, Keith noticed a sign that said, “weight limit 650 lbs.”

2. Toby weighs 169 lbs., Keith weighs 172 lbs., and Sam weighs 202 lbs. What could Sarah weigh so that all four could safely ride on the elevator?
 A. 112 lbs.
 B. 110 lbs.
 C. 108 lbs.
 D. 106 lbs.

3. The elevator stops at the 10th floor. The two heaviest people get off. What is their combined weight?
 A. 169 lbs.
 B. 275 lbs.
 C. 341 lbs.
 D. 374 lbs.

4. Tanya is cutting different color paper which is all the same size. She cut the purple paper in half, the green into thirds and the orange into eighths. If she used one piece of each color, which piece is the biggest?
 A. green
 B. orange
 C. red
 D. purple
1. Draw a triangle that is congruent to triangle A.

![Triangle A](image)

2. Wendy loves to ride her bike. She rides 7.5 miles every Monday, Wednesday, Friday, and Saturday. How many miles does Wendy travel on her bike in one week?

A. 28 miles
B. 30 miles
C. 37.5 miles
D. 52.5 miles

3. A box has pencils inside: 6 blue, 4 purple, 5 green, and 5 red. You cannot see inside the box when you reach your hand in to get a pencil. What is the probability that Chris will reach into the box and pick a green pencil?

A. $\frac{1}{3}$
B. $\frac{1}{4}$
C. $\frac{1}{5}$
D. $\frac{3}{10}$
1. Study the T-chart below. There is a rule that changes each In number into an Out number. What is the rule for this T-chart?

<table>
<thead>
<tr>
<th>IN</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>?</td>
</tr>
</tbody>
</table>

A. \(1 \times N + 4\)
B. \(2 \times N + 3\)
C. \(2 \times N + 2\)
D. \(4 \times N + 1\)

Use the following graph to answer the next question:

![Favorite Seasons Pie Chart]

2. Mrs. Jones has 25 students in her class. What percentage of students chose fall as their favorite season?
 A. 30%
 B. 36%
 C. 38%
 D. 64%

Use the following chart to answer the next question.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 ounces</td>
<td>1 cup</td>
</tr>
<tr>
<td>2 pints</td>
<td>1 quart</td>
</tr>
<tr>
<td>2 cups</td>
<td>1 pint</td>
</tr>
<tr>
<td>4 quarts</td>
<td>1 gallon</td>
</tr>
</tbody>
</table>

3. Jontea needs four cups of milk for a recipe. The store only sells milk in pints, quarts, and gallons. Which of the following amounts is equal to four cups?
 A. 2 pints
 B. 8 pints
 C. 2 quarts
 D. 2 gallons
1. Find the value of the \(\Delta \) and the \(\Box \)\n\[
\begin{align*}
\Delta & = \frac{9}{10} \\
\Box & = \frac{3}{10}
\end{align*}
\]

2. What is the area of the shaded section?\n8 in. \(\times \) 6 in.\n
A. 18 sq. in.
B. 24 sq. in.
C. 36 sq. in.
D. 48 sq. in.
1. How many degrees are in angle A if triangle ABC is isosceles?

![Triangle ABC]

2. How many meters in 1000 x 10 km?

3. Filippe bought 12 muffins for his soccer team. Seven were chocolate and the rest were blueberry. What numerical expression best represents the number of muffins Filippe bought?
 A. $12 = 7 - N$
 B. $12 = 7 + N$
 C. $12 = N + N$
 D. $12 = 7 + 7$

Use the following graph to answer the question:

Classroom Scheduling

- Reading: 20%
- Mathematics: 20%
- Language: 20%
- Arts: 20%
- Science: 15%
- Specials: 15%
- Lunch: 5%
- Morning activities: 5%

4. If the school day is 400 minutes long, about how many minutes are spent in reading?
 A. 200 minutes
 B. 100 minutes
 C. 80 minutes
 D. 20 minutes
1. Which month did Mutiny score the **most** goals?
 A. May
 B. April
 C. February
 D. January

2. How many more goals were scored at home than away in the month of April?
 A. 2
 B. 10
 C. 40
 D. 90

3. How many goals did Mutiny score at home throughout the entire season?
 A. 100
 B. 145
 C. 155
 D. 295

4. How many more points did they score away than at home?
 A. 10
 B. 50
 C. 145
 D. 155
Jonathon spent a great deal of his time keeping a record of how many hours he spent doing volunteer work. He worked at the Red Cross Center for 17 hours, the homeless shelter for 12 hours, the preschool for 16 hours, and the library for 10 hours.

1. Construct a bar graph to display the information

2. Write two statements comparing the data in the graph.
1. Carlos (C) is 12 years old. Stephanie (S) is 3 years older than Carlos. Which equation best represents their ages?
 A. C = S
 B. C + 3 = S
 C. C - 3 = S
 D. C = 3S

2. Draw a quadrilateral with 4 right angles.

Use the following information to answer the next two questions.

1 km = 1,000 m
1 m = 100 cm

3. Mr. Mack’s class is going on a field trip to Busch Gardens. They will travel \(\frac{41}{2} \) km. How many meters will Mr. Mack’s class travel to Busch Gardens?
 A. 4,000 meters
 B. 4,500 meters
 C. 5,000 meters
 D. 5,500 meters

4. While at Busch Gardens, Mr. Mack’s class walks 2,500 meters. How many kilometers did the class walk?
 A. 2,500 km
 B. 2.5 km
 C. 5,000 km
 D. 5,500 km
1. Rosemarie wants to put a border around her bedroom. Her bedroom is 12 feet by 10 feet. She needs to know how much border to buy. What is the perimeter of her bedroom?

Use the following diagram to answer the next two questions.

The shaded area represents the area of Cynthia’s play space.

2. What is the area of Cynthia’s play space?

3. What is the perimeter of the space that is NOT the play space?

Norway Elementary School was participating in a marathon race. Five of the children in Mrs. Wolfson’s class finished the race. The following chart shows how long it took each child to complete the race.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carmen</td>
<td>1.6 hours</td>
<td></td>
</tr>
<tr>
<td>Donald</td>
<td>$1\frac{3}{4}$ hours</td>
<td></td>
</tr>
<tr>
<td>Jacob</td>
<td>1.2 hours</td>
<td></td>
</tr>
<tr>
<td>Ashley</td>
<td>2 hours</td>
<td></td>
</tr>
<tr>
<td>Kendrick</td>
<td>$1\frac{1}{2}$ Hours</td>
<td></td>
</tr>
</tbody>
</table>

4. Looking at their times, which child in Mrs. Wolfson’s class had the third fastest time?
 A. Carmen B. Ashley
 C. Donald D. Kendrick
1. Joseph has recorded the number of minutes it took him to roller blade 14 miles on four different days: 120 minutes, 102 minutes, 129 minutes, and 137 minutes. How much longer did it takes on his slowest day than on his fastest day?
 A. 18 minutes
 B. 27 minutes
 C. 35 minutes
 D. 239 minutes

2. Thelma (T) has 10 less baseball cards than Louise (L). Which equation represents this relationship?
 A. $L + T = 10$
 B. $L = T - 10$
 C. $T = 10L$
 D. $T = L - 10$

3. Draw a figure that has only one line of symmetry.

4. Explain why your figure has only one line of symmetry.
1. In Geometry class Jodi drew three parallel lines vertically. She then drew a line perpendicular to those lines. The perpendicular line intersected the parallel lines. Which figure did Jodi draw?

A.

B.

C.

D.

2. Jamie achieved the following scores on her spelling test:

<table>
<thead>
<tr>
<th>TEST</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>92%</td>
</tr>
<tr>
<td>2</td>
<td>94%</td>
</tr>
<tr>
<td>3</td>
<td>94%</td>
</tr>
<tr>
<td>4</td>
<td>93%</td>
</tr>
<tr>
<td>5</td>
<td>89%</td>
</tr>
</tbody>
</table>

Based on the above information, what is the mode of Jamie’s scores?

A. 89%
B. 92%
C. 93%
D. 94%

3. Arrange the values below from LEAST to GREATEST

0.5, 1/3, 9/10, 75%

4. The Smitty family has decided to build a greenhouse in their backyard so they can grow herbs. Uncle Leo drew two sketches so they could decide what size they wanted.

<table>
<thead>
<tr>
<th>20 ft.</th>
<th>15 ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 ft.</td>
<td>15 ft.</td>
</tr>
</tbody>
</table>

What is the area, in square feet, of the drawing that provides the greater area for a greenhouse? (area = length x width)
The following circle graph shows the number of animals in Mr. Potts’ Pet Store.

1. If Mr. Potts has 25 turtles, ESTIMATE the total number of animals in Mr. Potts’ store. Explain your answer.

 Approximate number of animals in the pet store: _________

 Use this information to answer the next two questions:

 The scale is balanced.

2. Which action would maintain the equality?
 A. Add one circle to the left and one square to the right.
 B. Add two circles to both sides
 C. Add two circles to the left side.
 D. Add one square to the right side.

3. Which would NOT maintain the same equality?
 A. Subtract one circle from the left side.
 B. Subtract one square from the right side, and subtract two circles from the left.
 C. Add one square to the left side, and add two circles to the right.
 D. Add two squares to both sides.
1. Mr. Glenn is buying soda for his end of the year class party. He is buying 2 liter bottles of soda. A 2-liter bottle contains 8 servings. How many 2-liter bottles must he buy for his class of 20 students, 2 parent volunteers, and himself?
 A. 3 bottles
 B. 4 bottles
 C. 5 bottles
 D. 8 bottles

2. Don'tae and his family are having a pool party and cook out. They want to know how many hot dogs to buy. There are eight hot dogs in a package. Each person eats two hot dogs. Sixteen people will be eating. Let $H = \text{number of packages of hot dogs}$. Choose the correct equation for the number of hot dog packages Don'tae needs to buy:
 A. $H = (16 \times 2) \div 8$
 B. $H = (16 \times 2) \times 8$
 C. $H = (8 \times 2) + 16$
 D. $H = (8 \times 2) \div 16$

3. On the grid below draw 2 congruent figures. Explain why these 2 figures are congruent.
Use the following information to solve the next two problems.
16 ounces = 1 pound
1,000 grams = 1 kilogram

1. Frederick is purchasing 2 pounds of hamburger for a cookout. How many four-ounce burgers can he make?
 A. 2 B. 4 C. 8 D. 10

2. Elizabeth bought 8 kilograms of dog food for her four dogs. She distributes the dog food evenly. How many grams of dog food will each of her dogs get?
 A. 2,000 g B. 4,000 g
 C. 6,000 g D. 8,000 g

3. Express the following shaded amount as a decimal, fraction, and a percent.
 \[
 \begin{array}{cccccccccccccccc}
 & & & & & & & & & & & & & & & \\
 \text{Fraction} & & & & & & & & & & & & & & & \\
 \text{Decimal} & & & & & & & & & & & & & & & \\
 \text{Percent} & & & & & & & & & & & & & & & \\
 \end{array}
 \]

4. I have the same number of faces and vertices as a rectangular prism. What am I?
 A. A cylinder B. A pyramid
 C. A cone D. A cube
1. Which set below continues the pattern?

\[
\text{X O X X O O X X O O O O}
\]

A. X X X X O O O O O O
B. X X X O O O O O O
C. X X X O O O O
D. X O

2. Draw a 4 sided polygon.

What is the geometric name of your polygon?

Use geometric words to describe your figure.
1. The fifth grade is divided into 5 classes. Look at the table below. How many students are in the fifth grade?

<table>
<thead>
<tr>
<th>Fifth Grade Teachers</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mrs. Davis</td>
<td>32</td>
</tr>
<tr>
<td>Mrs. Rambo</td>
<td>30</td>
</tr>
<tr>
<td>Mrs. Bushy</td>
<td>28</td>
</tr>
<tr>
<td>Mrs. Wolfhound</td>
<td>31</td>
</tr>
<tr>
<td>Mrs. Jaskin</td>
<td>29</td>
</tr>
</tbody>
</table>

2. It is December third. Winter break begins December 21st. How many more days before winter break begins?

3. Every Friday Mayra deposits money into her savings account at Standard Federal Bank. Her first four deposits have been $4.00, $8.00, $12.00, and $16.00.

 Part I: If Mayra continues this pattern, how much money will she put in her savings account on the sixth deposit?

 A. $48.00
 B. $24.00
 C. $40.00
 D. $47.00

 Part II: In what deposit will Mayra have over $100.00 in her savings account?

 A. 15
 B. 100
 C. 25
 D. 26
1. What move must be done to item A to get item B?

 Item A

 Item B

2. If one side of the regular pentagon below has a length of \(\frac{27}{8}\) inches, what is the APPROXIMATE perimeter of the pentagon? Explain how you found your answer.

 \[
 \text{Approximate perimeter:} \underline{}
 \]
1. If the group of numbers below lists the prime numbers from least to greatest, what would the next three numbers be?

2, 3, 5, ______, ________, ________

A. 6, 7, 8
B. 7, 9, 11
C. 7, 11, 13
D. 7, 9, 13

2. I am a four digit number. The numeral in my thousands place is twice as much as my tens place. The numeral in my ones place is two less than the numeral in my tens place. The numeral in my hundreds place is twice the numeral in my ones place. The numeral in my tens place is 4. What is my number?

Use this balance to answer the next two questions.

\[\begin{array}{c}
10 + 8 \\
\downarrow \\
24 - 6
\end{array} \]

3. Which one of the following would maintain the equality?
A. Add five to the left and four to the right
B. Subtract four from the left and subtract five from the right.
C. Subtract six from the left side and add six to the right
D. Subtract six from the left and subtract six from the right.

4. Suppose the left side were multiplied by two and 18 were added to the right side.
A. The number on the right side is greater.
B. The number on the left side is greater.
C. The equation stays balanced.
Gwen’s dog kennel has twice the length and width of Bill’s dog kennel. Bill’s kennel is shown below.

10 ft.

5 ft.

1. What is the area of Gwen’s dog kennel?
 A. 50 square feet
 B. 100 square feet
 C. 200 square feet
 D. 60 square feet

2. It is 5:45 P.M. Ricky has just finished his homework. If Ricky started his homework at 3:15 P.M., how much time did he spend on his homework?

3. Suppose you spun a paper clip on the spinner below 20 times. What percentage of times would you expect to land on an even number? _______? Odd number? __________?

Explain how you got your answers.
1. Corner Supermarket is setting up their canned soup display. The bottom row contains 12 cans. The second row contains 11 cans and the third row contains 10 cans. If this pattern continues, how many cans would be in the fifth row?
 A. 9
 B. 8
 C. 7
 D. 6

2. I have one face and one vertex. What common geometric shape am I?
 A. cone
 B. cylinder
 C. cube
 D. pyramid

3. There were 20 cookies in the box. If Jan ate 5 of the cookies, what fraction of the cookies did she eat?
 A. \(\frac{5}{10} \)
 B. \(\frac{1}{4} \)
 C. \(\frac{1}{20} \)
 D. \(\frac{1}{5} \)

4. Melissa placed 4 triangles on one side of a balance scale. Then she placed 2 squares on the other side of the scale to make it balance. If Melissa takes one square off the scale, how many triangles would she have to remove to keep the scale balanced?
1. The floor plan of a living room is shown below. It shows space for a TV cabinet and space for a table.

Draw another space on the grid. The space you draw should have an area greater than the TV cabinet but less than the table. Label the space you draw **rug**.

Use the following information to answer the next two questions.

Melinda and Jeffrey are in charge of planning a party. They have invited 30 friends for pizza at 6:00 p.m. Twenty-two of their friends said they would come.

2. Jeffrey wants to make sure he buys enough pizza for the party. He knows each large pizza comes in eight slices. What must Jeffrey ESTIMATE before he can order the pizza?
 A. How many slices of pizza each person might eat.
 B. How many two liter bottles of soda his mother will buy.
 C. What time his friends will arrive
 D. How many people are coming to the party.

3. If each person will eat 2 slices of pizza, which number sentence could Jeffrey use to determine how many pizzas he should buy?
 A. \((30 \times 2) \times 8\)
 B. \((24 \times 2) \div 8\)
 C. \((24 \times 2) \times 8\)
 D. \((30 \times 2) \div 8\)
The Chocolate Delight Cookie Company guarantees a certain number of chips per cookie. This table shows the relationship between the number of cookies and the number of chocolate chips.

<table>
<thead>
<tr>
<th>Number of cookies</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of chocolate chips</td>
<td>12</td>
<td>20</td>
<td>28</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Which expression shows the number of chips when you know the number of cookies (C)?
 A. C + 4 B. C - 4 C. 4C D. C \div 4

2. Which figure below is a rectangle, a parallelogram, and a polygon?
 A. triangle B. trapezoid C. circle D. square

3. What percentage best describes the darkest shaded area?
 A. 10% B. 30% C. 67% D. 90%

4. Mrs. Murray distributed gumballs to each of her children. Each child received 4 blue, 1 red, 2 green, and 5 yellow. If a child put their gumballs into a paper bag and picked one, which color would be least likely to be picked?
 A. blue B. red C. green D. yellow
1. Lindsey earns $10.00 a week for helping around the house. If she spends 75% of this money on entertainment, how much is Lindsey spending on entertainment?

 A. $2.50
 B. $5.00
 C. $7.00
 D. $7.50

2. Guido is saving to buy a new boom box that costs $135.00. If N represents the amount of money Guido has already saved, which expression below represents how much more he needs in order to buy the boom box.

 A. 135 - N
 B. 135 + N
 C. N - 135
 D. 135N

3. Suppose you have 7 coins in your pocket. If you only have dimes and quarters, what is the largest total value you could have? What is the smallest total value you could have?

 Largest ________________ Smallest ________________
1. In the space below, draw a right triangle and an obtuse triangle. Label each.

Use the following scale for the next two questions.

\[\frac{84}{78 + 6} \]

2. Which would maintain the equality of the above scale?
 A. Subtract four from the left, and add two to the right.
 B. Multiply both sides by two
 C. Add six to the left, subtract six from the right
 D. Divide the left by four, divide the right by two.

3. Which would NOT maintain the equality of the above scale?
 A. Subtract 6 from both sides.
 B. Multiply the left by 4, multiply the right by 4
 C. Add 6 to left, add 6 to the right
 D. Divide the left by 2, divide the right by 4.
1. Candice is going to put a border around the garden, shown above, using wooden planks. How many feet of wooden planks will she need?

 A. 14 ft.
 B. 20 ft.
 C. 25 ft
 D. 18 ft.

2. John can buy a pack of baseball cards that contains 10 cards for $0.80 or he can buy a pack that contains 15 cards for $1.25. If John wants to purchase the pack that is a better buy, which pack should he buy? Explain your answer.

3. A fifth grader wrote the answers to some related math questions, she noticed a pattern and organized her work in a table. What is the rule for the pattern that she noticed?

<table>
<thead>
<tr>
<th>Input</th>
<th>1 1/4</th>
<th>1 3/4</th>
<th>1 1/4</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>1 1/2</td>
<td>2</td>
<td>1 1/2</td>
<td>2 1/4</td>
</tr>
</tbody>
</table>

 A. Add 1/2
 B. Add 1/4
 C. Subtract 1/2
 D. Subtract 1/4
1. Frank has \(2 \frac{1}{4}\) candy bars. He wants to share his candy bar with 2 of his friends. How much of the candy bars will Frank and his friends each get?

2. Millie and Jose have put 6 quarts of water into a fish tank. The tank has a capacity of 4 gallons. How many more quarts of water do they need to fill the tank?
 A. 24 quarts
 B. 10 quarts
 C. 12 quarts
 D. 2 gallons

3. In May, the city of Phoenix receives an average of 0.1 inch of rain. Which of these models can be used to represent 0.1?
 A.
 B.
 C.
 D.

4. Marta is arranging her father’s wrenches in the tool chest from the smallest size to the largest size. In which order should the wrenches be placed?
 A. \(\frac{1}{4}, \frac{1}{8}, \frac{5}{8}\)
 B. \(\frac{1}{8}, \frac{5}{8}, \frac{1}{4}\)
 C. \(\frac{1}{8}, \frac{1}{4}, \frac{5}{8}\)
 D. \(\frac{5}{8}, \frac{1}{8}, \frac{1}{4}\)
Mathematics Review
Grade 5

Day 1
Answers:
1. C (MA.C.3.2.1)
2. B (MA.B.2.2.2)
3. 9 circles (MA.B.2.2.1)
4. 149 (MA.D.2.2.2)

Day 2
Answers:
1. C (MA.A.3.2.2)
2. A (MA.E.2.2.2)
3. 50 (MA.A.1.2.1)
4. 149 (MA.E.1.2.2)

Day 3
Answers:
1. 3 x 3 square (MA.C.3.2.3)
2. A (MA.B.2.2.1)
3. B (MA.A.5.2.1)

Day 4
Answers:
1. D (MA.E.3.2.1)
2. D (MA.B.2.2.1)
3. 6 (MA.E.1.2.2)
4. 37 (MA.D.2.2.1)

Day 5
Answer: The area of the storage space should be greater than 20 square units but less than 48 square units. Explanations will vary. (MA.C.3.2.1)

Day 6
Answers:
1. B (MA.A.1.2.4)
2. C (MA.A.1.2.3)
3. 25 (MA.D.1.2.1)
4. 480 (MA.B.2.2.1)
Day 7
Answers: 1. D (MA.E.2.2.2) 2. A (MA.C.2.2.2)

Day 8
Answers: 1. B (MA.D.2.2.1) 2. C (MA.D.2.2.2) 3. No. Since John’s section is less than half of the total, Suzie has a greater chance of winning. (MA.E.2.2.1)

Day 9
Answers: 1. A (MA.A.3.2.2) 2. B (MA.D.1.2.1) 3. 60% (MA.A.1.2.4) 4. 96 (MA.A.3.2.3)

Day 10
Answers: 1. $42.50 (MA.A.3.2.3) 2. 459 lbs. (MA.B.2.2.1) 3. 1,500 (MA.E.1.2.1)

Day 11
Answers: 1. B (MA.C.2.2.2) 2. D (MA.D.2.2.1) 3. 30 feet (MA.B.1.2.2) 4. A (MA.A.1.2.3)

Day 12
Answers: 1. C (MA.D.1.2.1) 2. 36 (MA.A.2.2.1) 3. C (MA.E.1.2.2)

Day 13
Answers: 1. B (MA.C.3.2.1) 2. C (MA.A.1.2.4) 3. The southern red cedar should be circled. It is the most symmetrical because it can be cut in half and would be the same on both sides. (MA.C.2.2.1)
Day 14	Answers:	1. C (A.5.2.1)	2. B (B.2.2.2)	3. 40 feet (B.1.2.2)	4. 6 (D.1.2.1)
Day 15	Answers:	A. 79 (MA.E.1.2.1)	B. 83	C. 75	
Day 16	Answers:	1. D (MA.A.1.2.3)	2. C (MA.A.3.2.2)	3. C (MA.B.2.2.1)	4. A(MA.B.2.2.1)
Day 17	Answers:	1. C (B.2.2.1)	2. 15 blocks (D.1.2.1)	3. 364 inches (B.1.2.2)	4. $90.00 (A.3.2.3)
Day 18	Answers:	1. A (C.1.2.1)	2. D (D.2.2.1)	3. Green: 32 times out of 64 spins. (The spinner would land on green 50% of the time.) Blue: 16 times out of 64 spins. (The spinner would land on blue 25% of the time.) Yellow and red: 8 times out of 64 each. (The spinner would land on yellow and red 12.5% of the time.) (E.2.2.1)	
Day 19	1. 600 m (B.2.2.1)	2. .30 (A.2.2.1)	3. 10 years old (D.2.2.2)	4. B (A.3.2.2)	
Day 20
Answer: 16 ft door 3 ft
12 ft 3 ft Island
5 ft.
Mr. Barrett will need to purchase 66 feet of baseboard. The kitchen has 2 lengths of 16 feet and two widths of 12 feet each, making a total of 56 feet. There are two 3-foot doorways that will not require baseboard, so 56 - 6 = 50. The perimeter of the (5 by 3 foot) island counter is 16 feet. Adding that to the 50 feet he needs for the wall edges makes a total of 66 feet of baseboard molding. (C.3.2.1)

Day 21
Answers: 1. B (A.3.2.3) 2. D (B.2.2.1) 3. The table should be completed with the following numbers: Day six = $15.00 Day seven = $17.50 AND an explanation similar to the following: The amount of money goes up $2.50 each day or any other valid explanation which shows an understanding of the constant $2.50 being added to each successive table entry.

Day 22
Answers: 1. D (C.3.2.2) 2. B (D.2.2.1) 3. C (A.1.2.1) 4. A (3.2.1)

Day 23
Answers: 1. 25% (A.1.2.4) 2. D (D.2.2.1) 3. C (A.1.2.3) 4. C (B.4.2.1)
Day 24
Answers: 1. D (B.1.2.2) 2. C (D.2.2.2) 3. The students live an average of 2.0 miles from school. The students should also include a valid estimation strategy. Example: I knew that 0.6 was close to 0.5. I added 1.5 + 0.5 + 3 + 2 =7. Since there were four students I needed to divide by four. Seven is close to eight which divides evenly by four. \(8 \div 4 = 2 \) (A.4.2.1)

Day 25
Answers: 1. D (A.3.2.1) 2. A (C.3.2.1) 3. D (D.2.2.2)

Day 26
Answers: 1. B (B.4.2.1) 2. Jamie (B.1.2.2) 3. 8 feet (B.1.2.2)

Day 27
Answers: 1. C (A.3.2.3) 2. C (D.1.2.1) 3. Sample explanation: Marvin did not draw his lines correctly. Marvin began with a vertical line first, instead of a horizontal line.

Day 28
Answers: 1. 90% (A.1.2.4) 2. D (B.3.2.1) 3. D (E.1.2.1)
Day 29
Answers: See bar graph below.
Write two statements comparing how students get to school. 1. Four times as many students ride the bus to school as ride their bikes to school. 2. The same number of students take a car to school as walk to school. (Or other valid comparisons) (E.1.2.1)

Day 30
Answers: 1. 3,600 (A.3.2.3) 2. $7.92 (A.3.2.3) 3. $65.00 (B.1.2.2) 4. 30 (D.1.2.1)

Day 31
Answers: 1. $100.00 is not enough money. Explanation: Round $9.75 to $10.00 and multiply by 12: $10 x 12 = $120 (A.4.2.1) 2. C (C.3.2.2) 3. B (B.1.2.2)

Day 32
Answers: 1. B (D.2.2.2) 2. F (A.2.2.1) 3. y = 4 (D.2.2.1) 4. 70 (E.1.2.2)
<table>
<thead>
<tr>
<th>Day 33</th>
<th>Answers: 1. D (B.4.2.1) 2. 3 or 5 (A.3.2.1) 3. 2 (D.2.2.1) 4. C (C.3.2.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 34</td>
<td>Answers: 1. 8 (D.1.2.1) 2. 18,000 (A.4.2.1) 3. 40 (A.3.2.3)</td>
</tr>
<tr>
<td>Day 35</td>
<td>Answers: 1. 20 (D.2.2.2) 2. B (A.3.2.1) 3. B (B.1.2.2) 4. C (B.2.2.2)</td>
</tr>
<tr>
<td>Day 36</td>
<td>Answers: 1. C (E.1.2.2) 2. B (E.1.2.2) 3. A Possible explanation: I know that in 7 years Anna will be 21. That means that she is 14 now (21 - 7 = 14). I also know that she is 6 years older than Bruce. Bruce is 8 years old (14 - 6 = 8) (D.2.2.1)</td>
</tr>
<tr>
<td>Day 37</td>
<td>Answers: 1. 54 ounces (D.2.2.2) 2. A (E.1.2.1) 3. 2.5 Km (B.2.2.2) 4. 8 hours (B.1.2.2)</td>
</tr>
<tr>
<td>Day 38</td>
<td>Answers: 1. $1.06 (B.4.2.1) 2. 9 packages-2 cupcakes 8 packages-3 cupcakes (D.2.2.2) 3. B (C.2.2.2) 4. △ (C.2.2.1)</td>
</tr>
<tr>
<td>Day 39</td>
<td>Answer: To solve this problem the student must first complete the chart. Senior citizens: 2 tickets, Adults: 7 tickets, Students: 5 tickets, Children: 8 tickets, Preschool: 2 tickets Be sure axes which are labeled and intervals are appropriate. Title should relate to subject matter. Two statements of comparison similar to any of the following: There were more children’s tickets purchased than any other. An equal number of senior citizen and preschool tickets were purchased. (E.1.2.1)</td>
</tr>
</tbody>
</table>
Day 40
Answers: 1. 3 pints (B.1.2.2) 2. 12 quarts (B.1.2.2) 3. D (A.3.2.2) 4. 1/6 of the garden (A.3.2.2)

Day 41
Answers: 1. C (E.1.2.2) 2. C (B.2.2.1) 3. Any of the lines on these drawings would work.

Explanation: My line above demonstrates symmetry because the shape on both sides of the line is the same. OR The shape on both sides of the line mirror each other, OR a similar statement about symmetry. (C.2.2.1)

Day 42
Answers: 1. 4 1/2 cups (A.3.2.3) 2. A (A.3.2.3) 3. C (B.2.2.1) 4. B = 3 x A (D.1.2.2)

Day 43
Answers: 1. A (A.1.2.3) 2. A (A.1.2.2) 3. 3.4 (B.1.2.2) 4. 160 ft. (B.1.2.2)

Day 44
Answers: 1. B (A.3.2.2) 2. B (B.1.2.2) 3. 9 (D.2.2.1) 4. A (C.2.2.2)

Day 45
Answers: 1. 25 (D.2.2.1) 2. B (A.3.2.3) 3. B (C.3.2.3)
Day 46

Answers: 1. 0.050 (A.2.2.1)
2. A (B.4.2.1)
3. B (D.1.2.1)
4. A (C.3.2.2)

Day 47

Answers: 1. 1,048 lbs. (B.2.2.1)
2. B (A.1.2.4)
3. A. A possible explanation would be similar to the following: If Figure A was folded along the dotted line, the halves of the figure would match exactly.

Day 48

Answers: 1. S = 2 x A (D.1.2.2)
2. C (B.3.2.1)
3. A (D.2.2.1)
4. B (1.2.2)

Day 49

Answer: The area of water section should equal 100 meters square (10x10). The area left for other games should equal 300 meters square. Diagram should have one section labeled “Water Sector C” that has an area of one hundred squares. There should be three other areas labeled 1,2, and 3 that are equal in area, each 100 meters square. (C.3.2.1)

Day 50

Answers: 1. A (B.2.2.2)
2. C (A.1.2.2)
3. The answer should be between 1,400,000 and 1,800,000. The rationalization should be that in 1930 the population was 1,400,000 and in 1940 the population was 1,800,000. Since 1935 is between 1930 and 1940, the answer should be between those two population numbers.

Day 51

Answers: 1. 7.24 miles (A.3.2.1)
2. C (E.2.2.2)
3. B (D.2.2.1)
4. C (B.2.2.2)

Day 52

Answers: 1. A (E.1.2.2)
2. B (B.1.2.2)
3. D (D.2.2.1)
4. Jamie is 6 years old (D.2.2.1)
Day 53
Answers: 1. A (B.3.2.1) 2. D (B.1.2.1) 3. 6 ways: ABC, ACB, BAC, BCA, CAB, CBA (E.2.2.1)

Day 54
Answers: 1. 7 (D.2.2.2) 2. B (D.1.2.1) 3. D (B.1.2.2) 4. Student answers should show a square divided into 4 equal boxes. The circle should be in upper right hand corner of the box. (C.2.2.2)

Day 55
Answers: 1. A (B.1.2.2) 2. n = 3, n = 30, n = 300. A dividend that is 10 times greater than the previous dividend will generate a quotient that is 10 times greater than the previous quotient. (D.1.2.2) 3. C (E.2.2.2)

Day 56
Answers: 1. 0.7 (A.2.2.1) 2. 28 yards (B.1.2.2) 3. $23.12 (A.3.2.3) 4. 22 (D.2.2.2)

Day 57
Answers: 1. A (B.1.2.2) 2. B (B.1.2.2) 3. 159 books each (A.3.2.2) 4. C (A.3.2.3)

Day 58
Answers: 1. A (A.3.2.2) 2. 6 weeks (D.1.2.1) 3. 27.5° C (B.3.2.1) 4. 2 feet (B.3.2.1)

Day 59
Answers: Part A: The area of the room is 100 square feet. The area of the carpet is 64 square feet. Part B: The area of the space between the wall and the carpet can be figured by subtracting the area of the carpet from the area of the total room: 100-64=36 square feet (C.3.2.1)
Day 60
Answers: 1. C (B.1.2.1) 2. D (D.2.2.2) 3. The Kent’s monthly family budget is around $2500. Rent (32%) + Food (15%) = 47%. Forty-seven percent is just under half (50%) of the total budget. If $1200 is a little less than half of the total budget, the total cost must be around $2500. (A.4.2.1)

Day 61
Answers: 1. A (A3.2.2) 2. C (A.2.2.1) 3. B (B.1.2.2) 4. 33 degrees F (B.1.2.1)

Day 62
Answers: 1. 2/3 cup (A.3.2.1) 2. $2.00 (B.3.2.1) 3. C = 6, H = 7, T = 1, E = 2, A = 5 (D.1.2.1)

Day 63
Answers: 1. 456, 465, 546, 564, 645, 654 (A.1.2.2) 2. 5 boxes (B.3.2.1) 3. Mode of the length =26 feet, Mean of the width =15 feet (E.3.2.1)

Day 64
Answer: Check student responses. The student should have created either a horizontal or vertical bar graph that displays the following information: State Park 8; Museum, 2; Zoo, 4; State Capitol 1. The graph should have a title relating to Field Trips and the axes should read, Place and Number of Votes. The scales should be appropriate and spread out at consistent intervals. (E.1.2.1)

See graph
Day 65
Answers: 1. C (A.3.2.1) 2. A (D.2.2.1) 3. The lines I drew have created the same shape on both sides of the center line. (C.2.2.1)

Day 66
Answers: 1. 3/4 (A.3.2.1) 2. C (A.3.2.1) 3. A (A.1.2.3) 4. C (A.1.2.2)

Day 67
Answers: 1. C (A.1.2.1) 2. 295,804 70,619 3. A correct and complete response includes a valid estimate and an explanation. The estimate should be supported by a valid estimation strategy AND contain an explanation. Sample explanation: To estimate the total number of miles, round to find the total distance 3 students walk each morning, 1.7+2.1+2 is about 2+2+2=6. So The average distance a student travels is 6÷3, or about 2 miles. Since there are 10 students who walk to school, the estimated total distance walked by the students is 10x2, or about 20 miles. (A.4.2.1)
Day 68

Answers: 1. $n=10$, $q=100$, $s=1000$ (A.2.2.1) 2. $1/4$, 0.25, 25%, 3. A quadrilateral is a closed four-sided polygon constructed using four line segments. (C.2.2.1)

Day 69

Answer: 1. The student should have correctly tabulated the tallies to determine the following: 28 students preferred Pop the Balloons, 35 students preferred Flip the Coin, 7 students preferred Guess my Height, 12 students preferred 3-Legged Race, 20 students preferred Basketball Throw.

The student should have graphed the results similar to the example below: All major parts (title, axes and appropriate scales) should be included. See graph below. 2. Two statements needed to be written: They might have compared the survey results: 1. The students like the Flip the Coins game the best. 2. The students like Guess my Height the least.

![Bar Chart](chart.png)

Day 70

Answers: 1. D (3.2.2) 2. D (B.4.2.1) 3. 5 seconds: 350 beats, 6 seconds: 420 beats. Explanation: The number of wing beats is 70 beats per second.

Day 71

Answers: 1. 0.2 (A.2.2.1) 2. 10 (B.1.2.2) 3. 25% (A.1.2.4) 4. 0.07 (A.1.2.2)
Day 72
Answers: 1. Sample answer: Each of the polygons in Group A have more than 3 vertices. 2. Each of the polygons in Group B have exactly three vertices (C.1.2.1) 3. 5: Explanation: The number in the right-most column is the product of the number in the left -most column and 5. (D.1.2.2)

Day 73
Answers: 1. C (A.5.2.1) 2. A (A.3.2.1) 3. 18% (A.1.2.1) 4. 100% (A.1.2.1)

Day 74
Answer: (E.1.2.1)

<table>
<thead>
<tr>
<th>Flavor</th>
<th>Student Responses</th>
<th>Number of Students</th>
<th>Fraction</th>
<th>Decimal</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grape</td>
<td></td>
<td>2</td>
<td>2/40 or 1/20</td>
<td>0.05</td>
<td>5%</td>
</tr>
<tr>
<td>Lime</td>
<td></td>
<td>10</td>
<td>10/40 or 1/4</td>
<td>0.25</td>
<td>25%</td>
</tr>
<tr>
<td>Orange</td>
<td></td>
<td>8</td>
<td>8/40 or 1/5</td>
<td>0.2</td>
<td>20%</td>
</tr>
<tr>
<td>Strawberry</td>
<td></td>
<td>20</td>
<td>20/40 or 1/2</td>
<td>0.5</td>
<td>50%</td>
</tr>
</tbody>
</table>

Day 75
Answers: 1. D (B.2.2.2) 2. C (B.3.2.1) 3. First: Ashton, Second: Donnie, Third: Carmella Fourth: Jake. Possible explanation: I converted the fractional times into decimals (or the decimal times into fractions). This allowed me to easily see the order of finish.

Day 76
Answers: 1. Yes. Sample explanation: The measures of the corresponding sides and angles of the triangles do not change if either triangle is transformed by a slide, a turn or a reflection. (C.2.2.1) 2. A correct and complete response should include: A tree diagram showing each sour ball with all three of the candy wrappers. The total number of combinations of chocolate bars with sour ball = 9 (combinations: red-choco, red-yum, red-nutty, blue-choco, blue-yum, blue-nutty, green-choco, green-yum, green-nutty) (E.2.2.1)
Day 77
Answers: 1. 9; use the pattern of differences (2,3,4,5,6) to predict that there are 9 plants in the first row. (D.2.2.1) 2. 25% 3. 25%

Day 78
Answers: 1. C (B.4.2.1) 2. D (C.2.2.2) 3. Accept all reasonable predictions. Possible answer: Since Josh saw a total of 115 birds on 5 different days, he saw an average of 23 birds each day. As a result, he might have seen a total of 23 x 2 or 46 birds on Saturday and Sunday. (E.3.2.2)

Day 79
Part A: 55.5 square feet Part B: 61 square feet Part C: Part B is larger (C.3.2.1)

Day 80
Answers: 1. C (B.2.2.1) 2. B (A.3.2.1) 3. O,H,X When these letters are folded in half, both horizontally and vertically, one-half will lie on top of the other half. (C.2.2.1)

Day 81(Short response)
Answers: 1. Check student responses for triangles with 1-90-degree angle. (C.1.2.1) 2. D (D.1.2.2) 3. 8% (E.1.2.1)

Day 82
Answers: 1. B (A.3.2.1) 2. (C.2.2.1)

3. 8:15 because it is the only time that the line graph show a decrease in volume . (E.3.2.2)
Day 83
Answers: 1. C (A.2.2.2) 2. B (B.4.2.2) 3. ABC, ACB, BCA, BAC, CAB, CBA (E.2.2.1)

Day 84 (extended response)
Answer: A correct and complete answer includes a bar graph showing the following amounts:
Indian in the Cupboard, 6;
Wayside Stories, 6;
Hatchet, 5;
The Hobbit, 5;
The Lion, the Witch, and the Wardrobe, 8.
The graph should include a title relating to Favorite Books in Ms. Smith’s Class. Axes should be labeled: Books and Number of Students Voting. The scales should be appropriate and spread out at consistent intervals.

Day 85
Answers: 1. B (B.1.2.2) 2. B (1.2.2) 3. The completed chart for days 6 and 7 will have the answers $21.00 and $24.50 respectively. The students should have justified his/her answer by stating that there was an increase each day of $3.50.

Day 86
Answers: 1. 90 cubic meters (B.3.2.1) 2. (C.2.2.2) 3. ABC, ACB, BCA, BAC, CAB, CBA (E.2.2.1)

Day 87
Answers: 1. C (C.2.2.1) 2. A (B.1.2.1) 3. A1, A2, A3, B1, B2, B3, C1, C2, C3 (E.2.2.1)

Day 88
Answers: 1. 18 (C.1.2.1) 2. 1.2 (A.1.2.1) 3. PCH, CHP, HPC, PHC, CPH, HCP (E.2.2.1)
Day 89
Answer: The bar graph should show:
black, 14;
white, 35;
blue, 28;
purple, 18;
pink, 12.
There should be a title relating to Favorite Sneaker colors and the axes should be labeled: Number of Students and Colors. The scales should be consistent and spaced at appropriate intervals.
The two statements of comparison should include the following, or sentences like them
1. Black is the most popular sneaker color and pink is the least popular sneaker color
2. There are more students who prefer black sneakers than students who prefer pink and purple sneakers combined

Day 90
Answers: 1. A (B.1.2.1) 2. A (A.1.2.4) 3. C (A.1.2.3)

Day 91
Answers: 1. C (A.5.2.1) 2. A (E.1.2.3) 3. C (D.2.2.2) 4. C (A.3.2.3)

Day 92
Answers: 1. D (B.1.2.2) 2. A (A.3.2.3) 3. D (C.2.2.2) 4. B (A.1.2.4)
*3. A vertical flip moves the figure on the vertical axis even though it is flipped over a horizontal line.

Day 93
Answers: 1. B (A.5.2.1) 2. C (A.2.2.1) 3. The figure is rotate clockwise 90 degrees. (C.2.2.2)
<table>
<thead>
<tr>
<th>Day 94</th>
<th>Answers: 1. 1/2, 1/3, 1/4, 1/8 (A.1.2.1) 2. A (D.2.2.1) 3. C (B.1.2.2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 95</td>
<td>Answers: 1. A (A.1.2.1) 2. Tuna-ww, Tuna-rye, Tuna-white, Egg salad-ww, Egg salad-Rye, Egg salad-white, Cheese-ww, Cheese-rye, Cheese-white (E.2.2.1) 3. C (D.1.2.1)</td>
</tr>
<tr>
<td>Day 96</td>
<td>Answers: 1. 5 students=$2.50, 7 students=$3.50, 9 students = $4.50, $.50 x 20 = $10.00 2. Mean=6 Prediction for Felix=6, 3. Gallons of water used=252</td>
</tr>
<tr>
<td>Day 97</td>
<td>Answers: 1. C (A.1.2.2) 2. B (A.1.2.2) 3. D (B.1.2.1) 4. A (B.1.2.1)</td>
</tr>
<tr>
<td>Day 98</td>
<td>Answer: Check students’ graphs and tally charts. Sample statements: The number of students who liked orange juice was greater than the number of students who liked any other drink. The number of students who liked white milk was the same as the number of students who liked chocolate milk. (E.1.2.1)</td>
</tr>
<tr>
<td>Day 99</td>
<td>Answers: 1. 24 (E.1.2.2) 2. 82 (E.1.2.2) 3. 1 square meter(B.2.2.1) 4. 1/4 (A.1.2.2)</td>
</tr>
<tr>
<td>Day 100</td>
<td>Answers: 1. $90.00 (A.1.2.3) 2. B (B.2.2.2) 3. B (D.2.2.1) 4. D (C.2.2.2)</td>
</tr>
</tbody>
</table>
Day 101
Answers: 1. D (A.1.2.2) 2. B (A.1.2.2) 3. Students should draw an angle greater than 90 degrees and label it, “obtuse”. They should also draw an angle less than 90 degrees and label it acute. 4.) An obtuse angle is greater than 90 degrees and an acute angle is less than 90 degrees.

Day 102
Answers: 1. C. liters (B.2.2.2) 2. $8.75 (A.3.2.2) 3. C (B.1.2.1) 4. 535 (D.1.2.1)

Day 103
Answers: 1. B (B.1.2.1) 2. No, if you rounded off $2.98 to $3.00 and multiplied that amount times 4, it would equal $12.00. (A.4.2.1) 3. 15 (D.2.2.2)

Day 104
Answers: 1. 2 3/4 (A.1.2.3) 2. Trapezoid (C.3.2.2) 3. D (B.4.2.2) 4. Kaitlyn is 9, Pat is 14, and Ted is 18

Day 105
Answers: 1. 69.38, dividing by 10 allows for the movement of the decimal point one place to the left. (A.2.2.1) 2. 4, The greatest common number 16 and 12 are divisible by is 4.

Day 106
Part A: See graph below.

Part B: Sample sentences might include the following: There were more sunny days than rainy days. There were more sunny days than partly cloudy days. There were twice as many sunny days as there were rainy days.

Graph:
The graph should include the following information: Partly Cloudy, 6; Sunny, 10 and Rainy, 5. There should be a title and the axes should read, Weather and Number of Days. Scales should be consistent.
Day 107
Answers: 1. .346 (A.1.2.3) 2. Accept any answer between 25 and 28 square feet (C.3.2.1) 3. Accept any answer between 5 and 6 feet. (B.2.2.1) 4. 9 (D.1.2.1)

Day 108
Answers: 1. Period 4: 12:30 Period 5 1:45, Ending time 3:00 (B.3.2.1) 2. $26.25, the amount increases by $3.75 per day (D.1.2.2)

Day 109
Answers: 1.

(C.3.2.2) 2. 12 (C.3.2.1) 3. 100 (B.1.2.2) 4. Michael (B.1.2.1)

Day 110
Answers: 1. B (A.1.2.3) 2. B (D.2.2.1) 3. D (D.2.2.1) 4. B (B.2.2.2)
Day 111

Answers: 1. 5 (B.1.2.1) 2. 6 (E.2.2.1) Adams, Jefferson, Hancock

Day 112

Answers: 1. -4°C (B.1.2.1) 2. A (B.3.2.1) 3. $0.80 (A.3.2.3) 4. B (D.2.2.1)

Day 113

Answer: Part A Week 1-6 tallies, Week 2-4 tallies, Week 3-3 tallies, Week 4-4 tallies, Week 5-1 tally, Week 6-2 tallies, Week 7-3 tallies, Week 8-1 tally, Week 9-2 tallies, Week 10-4 tallies

Day 114

Answers: 1. B (C.1.2.1) 2. 5 (C.1.2.1) 3. Joey $60, Mabel $10, Emilio $20, Elvis $2, Mary $20 (A.4.2.1)

Day 115

Answers: 1. A (A.1.2.4) 2. 13 (D.2.2.2) 3. 860 lbs. & 3,050 lbs. or 2,400 & 1,350 lbs. (B.2.2.1) 4. B (B.2.2.2)

Day 116

Answers: 1. 42 inches: 3 feet, 6 inches (B.2.2.1) 2. 6 balls and 6 cylinders = 6 B + 6 C. Answers may vary depending on interpretation of objects. (D.1.2.2)
Day 117
Answers: 1. B (D.2.2.1) 2. D (E.3.2.1) 3. B (E.3.2.1) 4. B (E.3.2.1)

Day 118
Answers: 1. Thermometer 1= 20 degrees, Thermometer 2=35 degrees (B.1.2.2) 2. 2.455 tons (B.2.2.1) 3. D (A.1.2.1) 4. A (C.3.2.1)

Day 119
Answers: 1. Angle A (B.1.2.1) 2. B (B.1.2.1) 3. 4 squares (D.2.2.1) 4. C (A.1.2.1)

Day 120
Answers: 1. No, 3 erasers would be about $1:00, 4 pens $2.50, 2 notebooks $2.00 and a ruler $0.25 for a total of about $5.75. (B.3.2.1) 2. C (C.3.2.1) 3. C (C.3.2.1)

Day 121
Answers: 1. N + (N -15) = 65, 40 red birds, 25 blue birds (D.1.2.2) 2. Daniel must measure the length of the box, the height of the box, and the width of the box. He must then multiply the 3 numbers. (B.2.2.1)

Day 122
Answers: 1. $9.00 (B.2.2.1) 2. 24 inches (B.1.2.2) 3. 34° (B.1.2.1) 4. 45 (D.1.2.1)

Day 123
Answers: 1. B (A.1.2.3) 2. A (E.1.2.1) 3. B (E.1.2.1) 4. A (E.1.2.1)
Day 124
Answers: 1. Figures 2, 5, 6 are quadrilaterals. A quadrilateral is a polygon with 4 sides and 4 corners. (C.1.2.1)
2. Straight angle (B.1.2.2)

Day 125
Answers: 1. D (A.1.2.3) 2. A (A.1.2.3) 3. 5 seconds-125 drops, 6 seconds-150 drops, 7 seconds-175 drops, 8 seconds-200 drops, 9 seconds-225 drops, 10 seconds-250 drops. Explanation: The drops increase by increments of 25 per second.

Day 126
Answers: 1. B (B.4.2.1) 2. A (A.1.2.4) 3. C (A.1.2.4) 4. C (A.1.2.4)

Day 127
Answers: 1. C (A.3.2.3) 2. A (B.4.2.1) 3. 1 day, 21 hours and 5 minutes (B.1.2.2) 4. A

Day 128
Answers: 1. \[
\begin{array}{cc}
\text{Blue} & \text{Blue} \\
\text{Blue} & \text{White} \\
\end{array}
\]
\[= \quad 1 \frac{1}{4} \quad \text{(A.1.2.3)}\]
2. A (B.2.2.2) 3. By shading in one of the vertical columns (1/4) and 3 of the horizontal columns (3/5) you can see the overlapping section is the answer 3/20. (A.1.2.3)

Day 129
Answers: 1. C (E.2.2.2) 2. A (E.2.2.2) 3. Group A - Acute Angles Group B - Obtuse Angles Explanation: Group A has angles less than 90 degrees, Group B has angles greater than 90 degrees.
Day 130
Answers: First find the area of a rectangle by multiplying 2 meters by 1 meter. Then find the area of the two triangles (area of triangle = 1/2 • (bh) by multiplying 1/2 x 0.5 x 1. Multiply that answer by two because there are two triangles. Then add the area of the rectangle to the area of the two triangles to get the area of the trapezoid which is 2.5 square meters. (C.3.2.1)

Day 131
Answers: 1. 19/20 explanation: Count the boxes in the 3/4 area to get 15. Then count the boxes in 1/5 area and add the two numbers together to get 19/20 (A.1.2.3) 2. Length = 6, Width = 5 (B.2.2.1) 3. A (D.2.2.1)

Day 132
Answers: 1. D (A.1.2.4) 2. B (B.1.2.2) 3. C (D.2.2.2) 4. B (E.2.2.2)

Day 133
Answers: 1. 25%, .5, 3/4, 97% (A.1.2.4) 2. C (B.4.2.2) 3. 42, Explanation: The number of customers increases by 6 each hour. (D.1.2.2) 11-12=30; 12-1=36; 1-2=42; 2-3=48; 3-4= 54; 4-5= 60.

Day 134
Answers: 1. A (A.3.2.3) 2. C (B.3.2.1) 3. C (A.3.2.3) 4. B (A.3.2.3)

Day 135
Answers: 1. C (C.3.2.1) 2. C (B.1.2.1) 3. D (D.2.2.1) 4. A (A.1.2.3)

Day 136
Answers: 1. B (E.1.2.1) 2. D (E.1.2.1) 3. C (E.1.2.1) 4. B (E.1.2.1)
Day 137	Answers: 1. A (C.3.2.1) 2. B (A.3.2.3) 3. A (A.3.2.3) 4. A (A.3.2.3)
Day 138	Answers: 1. N = 9 (D.1.2.1) 2. N = 15 (D.1.2.1) 3. 45% (E.1.2.1) 4. 200 cubic inches (C 3.2.1)
Day 139	Answers: 1. C (A.1.2.4) 2. N - 4 = 8 explanation: Some number is N. Less four means take away 4. (D.2.2.1) 3. C (A.3.2.3).
Day 140	Answers: 1. A (B.2.2.1) 2. A (D.1.2.1) 3. C (A.1.2.3) 4. A (A.1.2.3)
Day 141	Answers: Check student responses for complete and accurate graphs. Student statements should include statements similar to the following: One more student voted to go to the Natural Springs rather than the Aquarium. Fewer students voted to go to the Art Museum than any other place.
Day 142	Answers: 1. C (A.1.2.4) 2. B (D.2.2.1) 3. D (D.1.2.1) 4. B (B.2.2.2)
Day 143	Answers: 1. B (C.2.2.2) 2. A (D.1.2.1) 3. C (B.1.2.1) 4. B (B.1.2.1)
Day 144
Answers: 1. Saturday -4, Sunday-0 Explanation: The amount of days decreases by 4 each day (D.1.2.2) 2. C (E.1.2.1) 3. B (E.1.2.1)

Day 145
Answers: 1. B (A.3.2.3) 2. D (A.3.2.3) 3. D (A.3.2.3) 4. C (D.2.2.1)

Day 146
Answers: 1. C (D.1.2.2) 2. A (A.1.2.4) 3. D (B.2.2.1) 4. A (B.2.2.2)

Day 147
Answers: 1. B (E.1.2.2) 2. D (E.1.2.2) 3. C (E.1.2.2) 4. A (E.1.2.2)

Day 148
Answers: Number 1-8 tallies; Number 2-6 tallies; Number 3-6 tallies; Number 4-4 tallies; Number 5-2 tallies; Number 6-4 tallies.
Check student graphs for completeness and accuracy. Student statements should be similar to the following: Number 1 occurred the most. 2 and 3 appeared the same number of times. (E.1.2.3)

Day 149
Answers: 1. B (A.3.2.3) 2. B (C.3.2.1) 3. 2x + x = 15, 10 snakes in Sasha’s yard (D.2.2.1)

Day 150
Answers: 1. A (B.1.2.1) 2. C (B.1.2.2) 3. D (B.2.2.2) 4. C (D.2.2.1)
Day 151	Answers: 1. C (D.2.2.1) 2. D (D.1.2.1) 3. D (B.1.2.2) 4. A (B.1.2.2)
Day 152	Answers: 1. B (A 4.2.1) 2. A (A.4.2.1) 3. C (A.4.2.1) 4. B (A.4.2.1)
Day 153	Answers: 1. D (B.2.2.2) 2. 12 (C.1.2.1) 3. D (D.1.2.2) 4. B (B.1.2.1)
Day 154	Answers: 1. 100,000 meters (B.2.2.1) 2. 10,000 (B.2.2.1) 3. 81% (E.1.2.2) 4. 10 (E.1.2.2)
Day 155	Answers: 1. A (D.1.2.2) 2. D (B.1.2.2) 3. D (B.1.2.2) 4. D. Purple (A.1.2.2)
Day 156	Answers: 1. Student responses should show a triangle that is the same size and the same shape as the triangle shown (C.2.2.1) 2. B (A.1.2.4) 3. B (E.2.2.2)
Day 157	Answers: 1. C (D.1.2.2) 2. B (E.1.2.3) 3. A (B.2.2.2)
Day 158
Answers: 1. \[=4, \quad = 1 \] (D.1.2.2) 2. B (B.1.2.1)

Day 159
Answers: 1. 45 degrees (C.1.2.1) 2. 10,000,000 m (B.2.2.1) 3. B (D.2.2.1) 4. C (E.1.2.3)

Day 160
Answers: 1. B (E.1.2.1) 2. B (E.1.2.1) 3. B (E.1.2.1) 4. A (E.1.2.1)

Day 161
Answers: Check student responses for complete and accurate graphs. Statements should be similar to the following: Jonathon worked for a total of 29 hours at the homeless shelter and the Red Cross Center. Jonathan worked at the library for the least amount of time. (E.1.2.1)

Day 162
Answers: 1. B (D.2.2.1) 2. Student responses should show a square or a rectangle (C.1.2.1) 3. B (B.2.2.2) 4. B (B.2.2.2)

Day 163
Answers: 1. 44 ft (B.1.2.2) 2. B (C.3.2.1) 3. C (C.3.2.1) 4. A (A.1.2.2)

Day 164
Answers: 1. C (B.1.2.2) 2. D (D.2.2.1) 3. Shapes will vary. Student should explain that there is only one line that can be drawn that would allow for one side of the figure to fold directly over the other side and match exactly. (C.2.2.1)
Day 165
Answers: 1. B (C.1.2.1) 2. D (E.1.2.2) 3. 1/3, 0.5, 75%, 9/10 (A.1.2.1) 4. 225 square feet (B.1.2.2)

Day 166
Answers: 1. Estimate 200 animals. Explanation: If 12% = 25 then 13% would be approximately 25 also. Double that for the cats, making the 50. Double again for the dogs. (A.4.2.1) 2. B (D.1.2.2) 3. A (D.1.2.2)

Day 167
Answers: 1. A (B.1.2.2) 2. A (D.2.2.1) 3. Answers will vary. Explanation should state that the two figures are the same size and the same shape (C.2.2.1)

Day 168
Answers: 1. C (B.1.2.2) 2. A (B.1.2.2) 3. 0.25, 1/4 or 25/100, 25% (A.1.2.2) 4. D (C.1.2.1)

Day 169
Answers: 1. A (D.1.2.2) 2. Student answers will vary. They should have drawn any figure with four sides and four corners. They should have named the figure appropriately (square, rectangle, trapezoid, parallelogram). They should have used appropriate geometric vocabulary to describe the polygon. Example: I drew a square because it has four equal sides and four equal angles. (C.1.2.1)

Day 170
Answers: 1. 150 students (A.3.2.3) 2. 18 days (B.1.2.1) 3. Part A. B (D.1.2.2) Part B. D (D.1.2.2)

Day 171
Answers: 1. Slide and flip (C.2.2.1) 2. 15 inches, round 2-7/8 inches off to 3 inches. Multiply by five sides. (E.2.2.1)
Day 172
Answers:
1. C (A.4.2.1)
2. 8,442 (A.1.2.1)
3. D (D.1.2.2)
4. C (D.1.2.2)

Day 173
Answers:
1. C (B.1.2.2)
2. 2 hours 30 minutes (B.1.2.2)
3. 50% even, 50% odd. Explanation: Half of the numbers are even and half are odd; therefore, 50% represents half of the number of times.

Day 174
Answers:
1. B (D.1.2.2)
2. A (C.1.2.1)
3. B (A.1.2.4)
4. 2 (B.2.2.1)

Day 175
Answers:
1. The section that is drawn must be labeled as rug and have an area that is greater than 25 square units but less than 45 square units. (C.3.2.1)
2. A (D.2.2.1)
3. B (D.2.2.1)

Day 176
Answers:
1. C (D.1.2.1)
2. D (C.1.2.1)
3. C (A.1.2.2)
4. B (E.2.2.2)

Day 177
Answers:
1. D (A.3.2.3)
2. A (D.2.2.1)
3. Largest: $1.60 Smallest: $0.85 (E.1.2.1)

Day 178
Answers:
1. Student answers will vary. They should have one triangle with a 90 degree angle labeled “right triangle” and one triangle with one angle greater than 90 degrees labeled “obtuse triangle”. (C.2.2.1)
2. B (D.2.2.1)
3. D (D.2.2.1)
Day 179
Answers: 1. B (B.1.2.1) 2. Pack A-because 15 cards is $\frac{1}{2}$ of the 10 pack and 1.25 is more than $1\frac{1}{2} \times 0.80$ (A.1.2.2) 3. B (D.1.2.1)

Day 180
Answers: 1. 3/4 (A.3.2.1) 2. B (A.3.2.1) 3. A (A.1.2.3) 4. C (A.1.2.2)
FCAT
Daily Questions
Correlations
Grade 5
Fifth Grade Mathematics Dailies Correlations

<table>
<thead>
<tr>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.3.2.1</td>
<td>1</td>
<td>1</td>
<td>C.2.2.2</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>1</td>
<td>2</td>
<td>D.2.2.1</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>B.2.2.1</td>
<td>1</td>
<td>3</td>
<td>B.1.2.2</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>D.2.2.2</td>
<td>1</td>
<td>4</td>
<td>A.1.2.3</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>A.3.2.2</td>
<td>2</td>
<td>1</td>
<td>D.1.2.1</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>E.2.2.2</td>
<td>2</td>
<td>2</td>
<td>A.2.2.1</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>2</td>
<td>3</td>
<td>E.1.2.2</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>E.1.2.2</td>
<td>2</td>
<td>4</td>
<td>C.3.2.1</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>C.3.2.3</td>
<td>3</td>
<td>1</td>
<td>A.1.2.4</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>B.2.2.1</td>
<td>3</td>
<td>2</td>
<td>C.2.2.1</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>A.5.2.1</td>
<td>3</td>
<td>3</td>
<td>A.5.2.1</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>E.3.2.1</td>
<td>4</td>
<td>1</td>
<td>B.2.2.2</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>B.2.2.1</td>
<td>4</td>
<td>2</td>
<td>B.1.2.2</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>E.1.2.2</td>
<td>4</td>
<td>3</td>
<td>D.1.2.1</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>4</td>
<td>4</td>
<td>E.1.2.1</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>5</td>
<td>1</td>
<td>E.1.2.1</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>A.1.2.4</td>
<td>6</td>
<td>1</td>
<td>E.1.2.1</td>
<td>15</td>
<td>3</td>
</tr>
<tr>
<td>A.1.2.4</td>
<td>6</td>
<td>1</td>
<td>A.1.2.3</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>A.1.2.3</td>
<td>6</td>
<td>2</td>
<td>A.3.2.2</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>6</td>
<td>3</td>
<td>B.2.2.1</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>B.2.2.1</td>
<td>6</td>
<td>4</td>
<td>B.2.2.1</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>E.2.2.2</td>
<td>7</td>
<td>1</td>
<td>B.2.2.1</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>C.2.2.2</td>
<td>7</td>
<td>2</td>
<td>D.1.2.1</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>8</td>
<td>1</td>
<td>B.1.2.2</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>D.2.2.2</td>
<td>8</td>
<td>2</td>
<td>A.3.2.3</td>
<td>17</td>
<td>4</td>
</tr>
<tr>
<td>E.2.2.1</td>
<td>8</td>
<td>3</td>
<td>C.1.2.1</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>A.3.2.2</td>
<td>9</td>
<td>1</td>
<td>D.2.2.1</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>9</td>
<td>2</td>
<td>E.2.2.1</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>A.1.2.4</td>
<td>9</td>
<td>3</td>
<td>B.2.2.1</td>
<td>19</td>
<td>1</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>9</td>
<td>4</td>
<td>A.2.2.1</td>
<td>19</td>
<td>2</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>10</td>
<td>1</td>
<td>D.2.2.2</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>B.2.2.1</td>
<td>10</td>
<td>2</td>
<td>A.3.2.2</td>
<td>19</td>
<td>4</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>10</td>
<td>3</td>
<td>C.3.2.1</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>
Fifth Grade Mathematics Dailies Correlations

<table>
<thead>
<tr>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.3.2.3</td>
<td>21</td>
<td>1</td>
<td>C.3.2.2</td>
<td>31</td>
<td>2</td>
</tr>
<tr>
<td>B.2.2.1</td>
<td>21</td>
<td>2</td>
<td>B.1.2.2</td>
<td>31</td>
<td>3</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>21</td>
<td>3</td>
<td>D.2.2.2</td>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>C.3.2.2</td>
<td>22</td>
<td>1</td>
<td>A.2.2.1</td>
<td>32</td>
<td>2</td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>22</td>
<td>2</td>
<td>D.2.2.1</td>
<td>32</td>
<td>3</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>22</td>
<td>3</td>
<td>E.1.2.2</td>
<td>32</td>
<td>4</td>
</tr>
<tr>
<td>A.3.2.1</td>
<td>22</td>
<td>4</td>
<td>B.4.2.1</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>A.1.2.4</td>
<td>23</td>
<td>1</td>
<td>A.3.2.1</td>
<td>33</td>
<td>2</td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>23</td>
<td>2</td>
<td>D.2.2.1</td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td>A.1.2.3</td>
<td>23</td>
<td>3</td>
<td>C.3.2.1</td>
<td>33</td>
<td>4</td>
</tr>
<tr>
<td>B.4.2.1</td>
<td>23</td>
<td>4</td>
<td>D.1.2.1</td>
<td>34</td>
<td>1</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>24</td>
<td>1</td>
<td>A.4.2.1</td>
<td>34</td>
<td>2</td>
</tr>
<tr>
<td>D.2.2.2</td>
<td>24</td>
<td>2</td>
<td>A.3.2.3</td>
<td>34</td>
<td>3</td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>24</td>
<td>3</td>
<td>D.2.2.2</td>
<td>35</td>
<td>1</td>
</tr>
<tr>
<td>A.3.2.1</td>
<td>25</td>
<td>1</td>
<td>A.3.2.1</td>
<td>35</td>
<td>2</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>25</td>
<td>2</td>
<td>B.1.2.2</td>
<td>35</td>
<td>3</td>
</tr>
<tr>
<td>D.2.2.2</td>
<td>25</td>
<td>3</td>
<td>B.2.2.2</td>
<td>35</td>
<td>4</td>
</tr>
<tr>
<td>B.4.2.1</td>
<td>26</td>
<td>1</td>
<td>E.1.2.2</td>
<td>36</td>
<td>1</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>26</td>
<td>2</td>
<td>E.1.2.2</td>
<td>36</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>26</td>
<td>3</td>
<td>D.2.2.1</td>
<td>36</td>
<td>3</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>27</td>
<td>1</td>
<td>D.2.2.2</td>
<td>37</td>
<td>1</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>27</td>
<td>2</td>
<td>E.1.2.1</td>
<td>37</td>
<td>2</td>
</tr>
<tr>
<td>C.1.2.1</td>
<td>27</td>
<td>3</td>
<td>B.2.2.2</td>
<td>37</td>
<td>3</td>
</tr>
<tr>
<td>A.1.2.4</td>
<td>28</td>
<td>1</td>
<td>B.1.2.2</td>
<td>37</td>
<td>4</td>
</tr>
<tr>
<td>B.3.2.1</td>
<td>28</td>
<td>2</td>
<td>B.4.2.1</td>
<td>38</td>
<td>1</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>28</td>
<td>3</td>
<td>D.2.2.2</td>
<td>38</td>
<td>2</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>29</td>
<td>1</td>
<td>C.2.2.2</td>
<td>38</td>
<td>3</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>29</td>
<td>2</td>
<td>C.2.2.1</td>
<td>38</td>
<td>4</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>30</td>
<td>1</td>
<td>E.1.2.1</td>
<td>39</td>
<td>1</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>30</td>
<td>2</td>
<td>B.1.2.2</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>30</td>
<td>3</td>
<td>B.1.2.2</td>
<td>40</td>
<td>2</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>30</td>
<td>4</td>
<td>A.3.2.2</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>31</td>
<td>1</td>
<td>A.3.2.2</td>
<td>40</td>
<td>4</td>
</tr>
</tbody>
</table>
Fifth Grade Mathematics Dailies Correlations

<table>
<thead>
<tr>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.1.2.2</td>
<td>41</td>
<td>1</td>
<td>A.3.2.1</td>
<td>51</td>
<td>1</td>
</tr>
<tr>
<td>B.2.2.1</td>
<td>41</td>
<td>2</td>
<td>E.2.2.2</td>
<td>51</td>
<td>2</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>41</td>
<td>3</td>
<td>D.2.2.1</td>
<td>51</td>
<td>3</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>42</td>
<td>1</td>
<td>B.2.2.2</td>
<td>51</td>
<td>4</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>42</td>
<td>2</td>
<td>E.1.2.2</td>
<td>52</td>
<td>1</td>
</tr>
<tr>
<td>B.2.2.1</td>
<td>42</td>
<td>3</td>
<td>B.1.2.2</td>
<td>52</td>
<td>2</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>42</td>
<td>4</td>
<td>D.2.2.1</td>
<td>52</td>
<td>3</td>
</tr>
<tr>
<td>A.1.2.3</td>
<td>43</td>
<td>1</td>
<td>D.2.2.1</td>
<td>52</td>
<td>4</td>
</tr>
<tr>
<td>A.1.2.2</td>
<td>43</td>
<td>2</td>
<td>B.3.2.1</td>
<td>53</td>
<td>1</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>43</td>
<td>3</td>
<td>B.1.2.2</td>
<td>53</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>43</td>
<td>4</td>
<td>E.2.2.1</td>
<td>53</td>
<td>3</td>
</tr>
<tr>
<td>A.3.2.2</td>
<td>44</td>
<td>1</td>
<td>D.2.2.2</td>
<td>54</td>
<td>1</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>44</td>
<td>2</td>
<td>D.1.2.1</td>
<td>54</td>
<td>2</td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>44</td>
<td>3</td>
<td>B.1.2.2</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>C.2.2.2</td>
<td>44</td>
<td>4</td>
<td>C.2.2.2</td>
<td>54</td>
<td>4</td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>45</td>
<td>1</td>
<td>B.1.2.2</td>
<td>55</td>
<td>1</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>45</td>
<td>2</td>
<td>D.1.2.2</td>
<td>55</td>
<td>2</td>
</tr>
<tr>
<td>C.3.2.3</td>
<td>45</td>
<td>3</td>
<td>E.2.2.2</td>
<td>55</td>
<td>3</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>46</td>
<td>1</td>
<td>A.2.2.1</td>
<td>56</td>
<td>1</td>
</tr>
<tr>
<td>B.4.2.1</td>
<td>46</td>
<td>2</td>
<td>B.1.2.2</td>
<td>56</td>
<td>2</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>46</td>
<td>3</td>
<td>A.3.2.3</td>
<td>56</td>
<td>3</td>
</tr>
<tr>
<td>C.3.2.2</td>
<td>46</td>
<td>4</td>
<td>D.2.2.2</td>
<td>56</td>
<td>4</td>
</tr>
<tr>
<td>B.2.2.1</td>
<td>47</td>
<td>1</td>
<td>B.1.2.2</td>
<td>57</td>
<td>1</td>
</tr>
<tr>
<td>A.1.2.4</td>
<td>47</td>
<td>2</td>
<td>B.1.2.2</td>
<td>57</td>
<td>2</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>47</td>
<td>3</td>
<td>A.3.2.2</td>
<td>57</td>
<td>3</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>48</td>
<td>1</td>
<td>A.3.2.3</td>
<td>57</td>
<td>4</td>
</tr>
<tr>
<td>B.3.2.1</td>
<td>48</td>
<td>2</td>
<td>A.3.2.2</td>
<td>58</td>
<td>1</td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>48</td>
<td>3</td>
<td>D.1.2.2</td>
<td>58</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>48</td>
<td>4</td>
<td>B.3.2.1</td>
<td>58</td>
<td>3</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>49</td>
<td>1</td>
<td>B.3.2.1</td>
<td>58</td>
<td>4</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>50</td>
<td>1</td>
<td>C.3.2.1</td>
<td>59</td>
<td>1</td>
</tr>
<tr>
<td>A.1.2.2</td>
<td>50</td>
<td>2</td>
<td>B.1.2.1</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>50</td>
<td>3</td>
<td>D.2.2.2</td>
<td>60</td>
<td>2</td>
</tr>
</tbody>
</table>
Fifth Grade Mathematics Dailies Correlations

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Day</th>
<th>Item</th>
<th>Benchmark</th>
<th>Day</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.4.2.1</td>
<td>60</td>
<td>3</td>
<td>C.1.2.1</td>
<td>72</td>
<td>2</td>
</tr>
<tr>
<td>A.3.2.2</td>
<td>61</td>
<td>1</td>
<td>D.1.2.2</td>
<td>72</td>
<td>3</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>61</td>
<td>2</td>
<td>A.5.2.1</td>
<td>73</td>
<td>1</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>61</td>
<td>3</td>
<td>A.3.2.1</td>
<td>73</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.1</td>
<td>61</td>
<td>4</td>
<td>A.1.2.1</td>
<td>73</td>
<td>3</td>
</tr>
<tr>
<td>A.3.2.1</td>
<td>62</td>
<td>1</td>
<td>A.1.2.1</td>
<td>73</td>
<td>4</td>
</tr>
<tr>
<td>B.3.2.1</td>
<td>62</td>
<td>2</td>
<td>E.1.2.1</td>
<td>74</td>
<td>1</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>62</td>
<td>3</td>
<td>B.2.2.2</td>
<td>75</td>
<td>1</td>
</tr>
<tr>
<td>A.1.2.2</td>
<td>63</td>
<td>1</td>
<td>B.3.2.1</td>
<td>75</td>
<td>2</td>
</tr>
<tr>
<td>B.3.2.1</td>
<td>63</td>
<td>2</td>
<td>A.1.2.2</td>
<td>75</td>
<td>3</td>
</tr>
<tr>
<td>E.3.2.1</td>
<td>63</td>
<td>3</td>
<td>C.2.2.1</td>
<td>76</td>
<td>1</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>64</td>
<td>1</td>
<td>E.2.2.1</td>
<td>76</td>
<td>2</td>
</tr>
<tr>
<td>A.3.2.1</td>
<td>65</td>
<td>1</td>
<td>D.2.2.1</td>
<td>77</td>
<td>1</td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>65</td>
<td>2</td>
<td>A.1.2.4</td>
<td>77</td>
<td>2</td>
</tr>
<tr>
<td>A.3.2.1</td>
<td>66</td>
<td>1</td>
<td>A.1.2.4</td>
<td>77</td>
<td>3</td>
</tr>
<tr>
<td>A.3.2.1</td>
<td>66</td>
<td>2</td>
<td>B.4.2.1</td>
<td>78</td>
<td>1</td>
</tr>
<tr>
<td>A.1.2.3</td>
<td>66</td>
<td>3</td>
<td>C.2.2.2</td>
<td>78</td>
<td>2</td>
</tr>
<tr>
<td>A.1.2.2</td>
<td>66</td>
<td>4</td>
<td>E.3.2.2</td>
<td>78</td>
<td>3</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>67</td>
<td>1</td>
<td>C.3.2.1</td>
<td>79</td>
<td>1</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>67</td>
<td>2</td>
<td>B.2.2.1</td>
<td>80</td>
<td>1</td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>67</td>
<td>3</td>
<td>A.3.2.1</td>
<td>80</td>
<td>2</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>68</td>
<td>1</td>
<td>C.2.2.1</td>
<td>80</td>
<td>3</td>
</tr>
<tr>
<td>A.1.2.4</td>
<td>68</td>
<td>2</td>
<td>C.1.2.1</td>
<td>81</td>
<td>1</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>68</td>
<td>3</td>
<td>D.1.2.2</td>
<td>81</td>
<td>2</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>69</td>
<td>1</td>
<td>E.1.2.1</td>
<td>81</td>
<td>3</td>
</tr>
<tr>
<td>A.3.2.2</td>
<td>70</td>
<td>1</td>
<td>A.3.2.1</td>
<td>82</td>
<td>1</td>
</tr>
<tr>
<td>B.4.2.1</td>
<td>70</td>
<td>2</td>
<td>C.2.2.1</td>
<td>82</td>
<td>2</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>70</td>
<td>3</td>
<td>E.3.2.2</td>
<td>82</td>
<td>3</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>71</td>
<td>1</td>
<td>A.2.2.2</td>
<td>83</td>
<td>1</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>71</td>
<td>2</td>
<td>B.4.2.2</td>
<td>83</td>
<td>2</td>
</tr>
<tr>
<td>A.1.2.4</td>
<td>71</td>
<td>3</td>
<td>E.2.2.1</td>
<td>83</td>
<td>3</td>
</tr>
<tr>
<td>A.1.2.2</td>
<td>71</td>
<td>4</td>
<td>E.1.2.1</td>
<td>84</td>
<td>1</td>
</tr>
<tr>
<td>C.1.2.1</td>
<td>72</td>
<td>1</td>
<td>B.1.2.2</td>
<td>85</td>
<td>1</td>
</tr>
</tbody>
</table>
Fifth Grade Mathematics Dailies Correlations

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Day</th>
<th>Item</th>
<th>Benchmark</th>
<th>Day</th>
<th>Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1.2.2</td>
<td>85</td>
<td>2</td>
<td>E.1.2.2</td>
<td>96</td>
<td>2</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>85</td>
<td>3</td>
<td>A.1.2.2</td>
<td>97</td>
<td>1</td>
</tr>
<tr>
<td>B.3.2.1</td>
<td>86</td>
<td>1</td>
<td>A.1.2.2</td>
<td>97</td>
<td>2</td>
</tr>
<tr>
<td>C.2.2.2</td>
<td>86</td>
<td>2</td>
<td>B.1.2.1</td>
<td>97</td>
<td>3</td>
</tr>
<tr>
<td>E.2.2.1</td>
<td>86</td>
<td>3</td>
<td>B.1.2.1</td>
<td>97</td>
<td>4</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>87</td>
<td>1</td>
<td>E.1.2.1</td>
<td>98</td>
<td>1</td>
</tr>
<tr>
<td>B.1.2.1</td>
<td>87</td>
<td>2</td>
<td>E.1.2.2</td>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>E.2.2.1</td>
<td>87</td>
<td>3</td>
<td>E.1.2.2</td>
<td>99</td>
<td>2</td>
</tr>
<tr>
<td>C.1.2.1</td>
<td>88</td>
<td>1</td>
<td>B.2.2.1</td>
<td>99</td>
<td>3</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>88</td>
<td>2</td>
<td>A.1.2.2</td>
<td>99</td>
<td>4</td>
</tr>
<tr>
<td>E.2.2.1</td>
<td>88</td>
<td>3</td>
<td>A.1.2.3</td>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>89</td>
<td>1</td>
<td>B.2.2.2</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.1</td>
<td>90</td>
<td>1</td>
<td>D.2.2.1</td>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>A.1.2.4</td>
<td>90</td>
<td>2</td>
<td>C.2.2.2</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>A.1.2.3</td>
<td>90</td>
<td>3</td>
<td>A.1.2.2</td>
<td>101</td>
<td>1</td>
</tr>
<tr>
<td>A.5.2.1</td>
<td>91</td>
<td>1</td>
<td>A.1.2.2</td>
<td>101</td>
<td>2</td>
</tr>
<tr>
<td>E.1.2.3</td>
<td>91</td>
<td>2</td>
<td>B.1.2.1</td>
<td>101</td>
<td>3</td>
</tr>
<tr>
<td>D.2.2.2</td>
<td>91</td>
<td>3</td>
<td>B.2.2.2</td>
<td>102</td>
<td>1</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>91</td>
<td>4</td>
<td>A.3.2.2</td>
<td>102</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>92</td>
<td>1</td>
<td>B.1.2.1</td>
<td>102</td>
<td>3</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>92</td>
<td>2</td>
<td>D.1.2.1</td>
<td>102</td>
<td>4</td>
</tr>
<tr>
<td>C.2.2.2</td>
<td>92</td>
<td>3</td>
<td>B.1.2.1</td>
<td>103</td>
<td>1</td>
</tr>
<tr>
<td>A.1.2.4</td>
<td>92</td>
<td>4</td>
<td>A.4.2.1</td>
<td>103</td>
<td>2</td>
</tr>
<tr>
<td>A.5.2.1</td>
<td>93</td>
<td>1</td>
<td>D.2.2.2</td>
<td>103</td>
<td>3</td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>93</td>
<td>2</td>
<td>A.1.2.3</td>
<td>104</td>
<td>1</td>
</tr>
<tr>
<td>C.2.2.2</td>
<td>93</td>
<td>3</td>
<td>C.3.2.2</td>
<td>104</td>
<td>2</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>94</td>
<td>1</td>
<td>B.4.2.2</td>
<td>104</td>
<td>3</td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>94</td>
<td>2</td>
<td>D.2.2.2</td>
<td>104</td>
<td>4</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>94</td>
<td>3</td>
<td>A.2.2.1</td>
<td>105</td>
<td>1</td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>95</td>
<td>1</td>
<td>A.5.2.1</td>
<td>105</td>
<td>2</td>
</tr>
<tr>
<td>E.2.2.1</td>
<td>95</td>
<td>2</td>
<td>E.1.2.1</td>
<td>106</td>
<td>1</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>95</td>
<td>3</td>
<td>A.1.2.3</td>
<td>107</td>
<td>1</td>
</tr>
<tr>
<td>D.2.2.2</td>
<td>96</td>
<td>1</td>
<td>C.3.2.1</td>
<td>107</td>
<td>2</td>
</tr>
</tbody>
</table>
Fifth Grade Mathematics Dailies Correlations

<table>
<thead>
<tr>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.2.2.1</td>
<td>107</td>
<td>3</td>
<td>B.1.2.2</td>
<td>118</td>
<td>1</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>107</td>
<td>4</td>
<td>B.2.2.1</td>
<td>118</td>
<td>2</td>
</tr>
<tr>
<td>B.3.2.1</td>
<td>108</td>
<td>1</td>
<td>A.1.2.1</td>
<td>118</td>
<td>3</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>108</td>
<td>2</td>
<td>C.3.2.1</td>
<td>118</td>
<td>4</td>
</tr>
<tr>
<td>C.3.2.2</td>
<td>109</td>
<td>1</td>
<td>B.1.2.1</td>
<td>119</td>
<td>1</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>109</td>
<td>2</td>
<td>B.1.2.1</td>
<td>119</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>109</td>
<td>3</td>
<td>D.2.2.1</td>
<td>119</td>
<td>3</td>
</tr>
<tr>
<td>B.1.2.1</td>
<td>109</td>
<td>4</td>
<td>A.1.2.1</td>
<td>119</td>
<td>4</td>
</tr>
<tr>
<td>A.1.2.3</td>
<td>110</td>
<td>1</td>
<td>B.3.2.1</td>
<td>120</td>
<td>1</td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>110</td>
<td>2</td>
<td>C.3.2.1</td>
<td>120</td>
<td>2</td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>110</td>
<td>3</td>
<td>C.3.2.1</td>
<td>120</td>
<td>3</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>110</td>
<td>4</td>
<td>D.1.2.2</td>
<td>121</td>
<td>1</td>
</tr>
<tr>
<td>B.1.2.1</td>
<td>111</td>
<td>1</td>
<td>B.2.2.1</td>
<td>121</td>
<td>2</td>
</tr>
<tr>
<td>E.2.2.1</td>
<td>111</td>
<td>2</td>
<td>B.2.2.1</td>
<td>122</td>
<td>1</td>
</tr>
<tr>
<td>B.1.2.1</td>
<td>112</td>
<td>1</td>
<td>B.1.2.2</td>
<td>122</td>
<td>2</td>
</tr>
<tr>
<td>B.3.2.1</td>
<td>112</td>
<td>2</td>
<td>B.1.2.1</td>
<td>122</td>
<td>3</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>112</td>
<td>3</td>
<td>D.1.2.1</td>
<td>122</td>
<td>4</td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>112</td>
<td>4</td>
<td>A.1.2.3</td>
<td>123</td>
<td>1</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>113</td>
<td>1</td>
<td>E.1.2.1</td>
<td>123</td>
<td>2</td>
</tr>
<tr>
<td>C.1.2.1</td>
<td>114</td>
<td>1</td>
<td>E.1.2.1</td>
<td>123</td>
<td>3</td>
</tr>
<tr>
<td>C.1.2.1</td>
<td>114</td>
<td>2</td>
<td>E.1.2.1</td>
<td>123</td>
<td>4</td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>114</td>
<td>3</td>
<td>C.1.2.1</td>
<td>124</td>
<td>1</td>
</tr>
<tr>
<td>A.1.2.4</td>
<td>115</td>
<td>1</td>
<td>B.1.2.2</td>
<td>124</td>
<td>2</td>
</tr>
<tr>
<td>D.2.2.2</td>
<td>115</td>
<td>2</td>
<td>A.1.2.3</td>
<td>125</td>
<td>1</td>
</tr>
<tr>
<td>B.2.2.1</td>
<td>115</td>
<td>3</td>
<td>A.1.2.3</td>
<td>125</td>
<td>2</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>115</td>
<td>4</td>
<td>D.1.2.2</td>
<td>125</td>
<td>3</td>
</tr>
<tr>
<td>B.2.2.1</td>
<td>116</td>
<td>1</td>
<td>B.4.2.1</td>
<td>126</td>
<td>1</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>116</td>
<td>2</td>
<td>A.1.2.4</td>
<td>126</td>
<td>2</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>116</td>
<td>2</td>
<td>A.1.2.4</td>
<td>126</td>
<td>3</td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>117</td>
<td>1</td>
<td>A.1.2.4</td>
<td>126</td>
<td>4</td>
</tr>
<tr>
<td>E.3.2.1</td>
<td>117</td>
<td>2</td>
<td>A.3.2.3</td>
<td>127</td>
<td>1</td>
</tr>
<tr>
<td>E.3.2.1</td>
<td>117</td>
<td>3</td>
<td>B.4.2.1</td>
<td>127</td>
<td>2</td>
</tr>
<tr>
<td>E.3.2.1</td>
<td>117</td>
<td>4</td>
<td>B.1.2.2</td>
<td>127</td>
<td>3</td>
</tr>
</tbody>
</table>
Fifth Grade Mathematics Dailies Correlations

<table>
<thead>
<tr>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.2.2.1</td>
<td>127</td>
<td>4</td>
<td>A.3.2.3</td>
<td>137</td>
<td>4</td>
</tr>
<tr>
<td>A.1.2.3</td>
<td>128</td>
<td>1</td>
<td>D.1.2.1</td>
<td>138</td>
<td>1</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>128</td>
<td>2</td>
<td>D.1.2.1</td>
<td>138</td>
<td>2</td>
</tr>
<tr>
<td>A.1.2.3</td>
<td>128</td>
<td>3</td>
<td>E.1.2.1</td>
<td>138</td>
<td>3</td>
</tr>
<tr>
<td>E.2.2.2</td>
<td>129</td>
<td>1</td>
<td>C.3.2.1</td>
<td>138</td>
<td>4</td>
</tr>
<tr>
<td>E.2.2.2</td>
<td>129</td>
<td>2</td>
<td>A.1.2.4</td>
<td>139</td>
<td>1</td>
</tr>
<tr>
<td>C.1.2.1</td>
<td>129</td>
<td>3</td>
<td>D.2.2.1</td>
<td>139</td>
<td>2</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>130</td>
<td>1</td>
<td>A.3.2.3</td>
<td>139</td>
<td>3</td>
</tr>
<tr>
<td>A.1.2.3</td>
<td>131</td>
<td>1</td>
<td>B.2.2.1</td>
<td>140</td>
<td>1</td>
</tr>
<tr>
<td>B.2.2.1</td>
<td>131</td>
<td>2</td>
<td>D.1.2.1</td>
<td>140</td>
<td>2</td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>131</td>
<td>3</td>
<td>A.1.2.3</td>
<td>140</td>
<td>3</td>
</tr>
<tr>
<td>A.1.2.4</td>
<td>132</td>
<td>1</td>
<td>A.1.2.3</td>
<td>140</td>
<td>4</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>132</td>
<td>2</td>
<td>E.1.2.1</td>
<td>141</td>
<td>1</td>
</tr>
<tr>
<td>D.2.2.2</td>
<td>132</td>
<td>3</td>
<td>A.1.2.4</td>
<td>142</td>
<td>1</td>
</tr>
<tr>
<td>E.2.2.2</td>
<td>132</td>
<td>4</td>
<td>D.2.2.1</td>
<td>142</td>
<td>2</td>
</tr>
<tr>
<td>A.1.2.4</td>
<td>133</td>
<td>1</td>
<td>D.1.2.1</td>
<td>142</td>
<td>3</td>
</tr>
<tr>
<td>B.4.2.2</td>
<td>133</td>
<td>2</td>
<td>B.2.2.2</td>
<td>142</td>
<td>4</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>133</td>
<td>3</td>
<td>C.2.2.2</td>
<td>143</td>
<td>1</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>134</td>
<td>1</td>
<td>D.1.2.1</td>
<td>143</td>
<td>2</td>
</tr>
<tr>
<td>B.3.2.1</td>
<td>134</td>
<td>2</td>
<td>B.1.2.1</td>
<td>143</td>
<td>3</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>134</td>
<td>3</td>
<td>B.1.2.1</td>
<td>143</td>
<td>4</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>134</td>
<td>4</td>
<td>D.1.2.2</td>
<td>144</td>
<td>1</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>135</td>
<td>1</td>
<td>E.1.2.1</td>
<td>144</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.1</td>
<td>135</td>
<td>2</td>
<td>E.1.2.1</td>
<td>144</td>
<td>3</td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>135</td>
<td>3</td>
<td>A.3.2.3</td>
<td>145</td>
<td>1</td>
</tr>
<tr>
<td>A.1.2.3</td>
<td>135</td>
<td>4</td>
<td>A.3.2.3</td>
<td>145</td>
<td>2</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>136</td>
<td>1</td>
<td>A.3.2.3</td>
<td>145</td>
<td>3</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>136</td>
<td>2</td>
<td>D.2.2.1</td>
<td>145</td>
<td>4</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>136</td>
<td>3</td>
<td>D.1.2.2</td>
<td>146</td>
<td>1</td>
</tr>
<tr>
<td>E.1.2.1</td>
<td>136</td>
<td>4</td>
<td>A.1.2.4</td>
<td>146</td>
<td>2</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>137</td>
<td>1</td>
<td>B.2.2.1</td>
<td>146</td>
<td>3</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>137</td>
<td>2</td>
<td>B.2.2.2</td>
<td>146</td>
<td>4</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>137</td>
<td>3</td>
<td>E.1.2.2</td>
<td>147</td>
<td>1</td>
</tr>
</tbody>
</table>
Fifth Grade Mathematics Dailies Correlations

<table>
<thead>
<tr>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.1.2.2</td>
<td>147</td>
<td>2</td>
<td>E.2.2.2</td>
<td>156</td>
<td>3</td>
</tr>
<tr>
<td>E.1.2.2</td>
<td>147</td>
<td>3</td>
<td>D.1.2.2</td>
<td>157</td>
<td>1</td>
</tr>
<tr>
<td>E.1.2.2</td>
<td>147</td>
<td>4</td>
<td>E.1.2.3</td>
<td>157</td>
<td>2</td>
</tr>
<tr>
<td>E.1.2.3</td>
<td>148</td>
<td>1</td>
<td>B.2.2.2</td>
<td>157</td>
<td>3</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>149</td>
<td>1</td>
<td>D.1.2.2</td>
<td>158</td>
<td>1</td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>149</td>
<td>2</td>
<td>B.1.2.1</td>
<td>158</td>
<td>2</td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>149</td>
<td>3</td>
<td>C.1.2.1</td>
<td>159</td>
<td>1</td>
</tr>
<tr>
<td>B.1.2.1</td>
<td>150</td>
<td>1</td>
<td>B.2.2.1</td>
<td>159</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>150</td>
<td>2</td>
<td>D.2.2.1</td>
<td>159</td>
<td>3</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>150</td>
<td>3</td>
<td>E.1.2.3</td>
<td>159</td>
<td>4</td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>150</td>
<td>4</td>
<td>E.1.2.1</td>
<td>160</td>
<td>1</td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>151</td>
<td>1</td>
<td>E.1.2.1</td>
<td>160</td>
<td>2</td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>151</td>
<td>2</td>
<td>E.1.2.1</td>
<td>160</td>
<td>3</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>151</td>
<td>3</td>
<td>E.1.2.1</td>
<td>160</td>
<td>4</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>151</td>
<td>4</td>
<td>E.1.2.1</td>
<td>161</td>
<td>1</td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>152</td>
<td>1</td>
<td>D.2.2.1</td>
<td>162</td>
<td>1</td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>152</td>
<td>2</td>
<td>C.1.2.1</td>
<td>162</td>
<td>2</td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>152</td>
<td>3</td>
<td>B.2.2.2</td>
<td>162</td>
<td>3</td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>152</td>
<td>4</td>
<td>B.2.2.2</td>
<td>162</td>
<td>4</td>
</tr>
<tr>
<td>B.2.2.2</td>
<td>153</td>
<td>1</td>
<td>B.1.2.2</td>
<td>163</td>
<td>1</td>
</tr>
<tr>
<td>B.2.2.1</td>
<td>153</td>
<td>2</td>
<td>C.3.2.1</td>
<td>163</td>
<td>2</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>153</td>
<td>3</td>
<td>C.3.2.1</td>
<td>163</td>
<td>3</td>
</tr>
<tr>
<td>B.1.2.1</td>
<td>153</td>
<td>4</td>
<td>A.1.2.2</td>
<td>163</td>
<td>4</td>
</tr>
<tr>
<td>A.1.2.2</td>
<td>154</td>
<td>1</td>
<td>B.1.2.2</td>
<td>164</td>
<td>1</td>
</tr>
<tr>
<td>B.2.2.1</td>
<td>154</td>
<td>2</td>
<td>D.2.2.1</td>
<td>164</td>
<td>2</td>
</tr>
<tr>
<td>E.1.2.2</td>
<td>154</td>
<td>3</td>
<td>C.2.2.1</td>
<td>164</td>
<td>3</td>
</tr>
<tr>
<td>E.1.2.2</td>
<td>154</td>
<td>4</td>
<td>C.1.2.1</td>
<td>165</td>
<td>1</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>155</td>
<td>1</td>
<td>E.1.2.2</td>
<td>165</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>155</td>
<td>2</td>
<td>A.1.2.1</td>
<td>165</td>
<td>3</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>155</td>
<td>3</td>
<td>B.1.2.2</td>
<td>165</td>
<td>4</td>
</tr>
<tr>
<td>A.1.2.2</td>
<td>155</td>
<td>4</td>
<td>A.4.2.1</td>
<td>166</td>
<td>1</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>156</td>
<td>1</td>
<td>D.1.2.2</td>
<td>166</td>
<td>2</td>
</tr>
<tr>
<td>A.1.2.4</td>
<td>156</td>
<td>2</td>
<td>D.1.2.2</td>
<td>166</td>
<td>3</td>
</tr>
</tbody>
</table>
Fifth Grade Mathematics Dailies Correlations

<table>
<thead>
<tr>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
<th>BENCHMARK</th>
<th>DAY</th>
<th>ITEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.1.2.2</td>
<td>167</td>
<td>1</td>
<td>D.2.2.1</td>
<td>177</td>
<td>2</td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>167</td>
<td>2</td>
<td>E.1.2.1</td>
<td>177</td>
<td>3</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>167</td>
<td>3</td>
<td>C.2.2.1</td>
<td>178</td>
<td>1</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>168</td>
<td>1</td>
<td>D.2.2.1</td>
<td>178</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>168</td>
<td>2</td>
<td>D.2.2.1</td>
<td>178</td>
<td>3</td>
</tr>
<tr>
<td>A.1.2.2</td>
<td>168</td>
<td>3</td>
<td>B.1.2.1</td>
<td>179</td>
<td>1</td>
</tr>
<tr>
<td>C.1.2.1</td>
<td>168</td>
<td>4</td>
<td>A.1.2.2</td>
<td>179</td>
<td>2</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>169</td>
<td>1</td>
<td>D.1.2.1</td>
<td>179</td>
<td>3</td>
</tr>
<tr>
<td>C.1.2.1</td>
<td>169</td>
<td>2</td>
<td>A.3.2.1</td>
<td>180</td>
<td>1</td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>170</td>
<td>1</td>
<td>A.3.2.1</td>
<td>180</td>
<td>2</td>
</tr>
<tr>
<td>B.1.2.1</td>
<td>170</td>
<td>2</td>
<td>A.1.2.3</td>
<td>180</td>
<td>3</td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>170</td>
<td>3</td>
<td>A.1.2.2</td>
<td>180</td>
<td>4</td>
</tr>
<tr>
<td>C.2.2.1</td>
<td>171</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.2.2.1</td>
<td>171</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>172</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>172</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>172</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>172</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>173</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.1.2.2</td>
<td>173</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.2.2.2</td>
<td>173</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.1.2.2</td>
<td>174</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.1.2.1</td>
<td>174</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.1.2.4</td>
<td>174</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.2.2.1</td>
<td>174</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.3.2.1</td>
<td>175</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>175</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.2.2.1</td>
<td>175</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D.1.2.1</td>
<td>176</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.1.2.1</td>
<td>176</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.1.2.2</td>
<td>176</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.2.2.2</td>
<td>176</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.3.2.3</td>
<td>177</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>